

Mesure de pressions partielles de gaz par diffusion Raman spontanée - Application à la gestion du risque hydrogène en situation d'accident nucléaire grave

Sylvain Magne, Simon Nehr, Xavier Buet, Etienne Studer, Roberta Scarpa, Daniele Abdo, Jean-Luc L Widloecher, Olivier Norvez, Emmanuel Porcheron, Ahmed Bentaïb, et al.

▶ To cite this version:

Sylvain Magne, Simon Nehr, Xavier Buet, Etienne Studer, Roberta Scarpa, et al.. Mesure de pressions partielles de gaz par diffusion Raman spontanée - Application à la gestion du risque hydrogène en situation d'accident nucléaire grave. 16ème Congrès Francophone de Techniques Laser pour la mécanique des fluides, Sep 2018, Dourdan, France. hal-02097796

HAL Id: hal-02097796

https://hal.science/hal-02097796

Submitted on 12 Apr 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MESURES DE PRESSIONS PARTIELLES DE GAZ PAR DIFFUSION RAMAN SPONTANÉE - APPLICATION À LA GESTION DU RISQUE HYDROGÈNE EN SITUATION D'ACCIDENT GRAVE DE RÉACTEUR NUCLÉAIRE

S. MAGNE, S. NEHR, X. BUET

CEA, LIST, DM2I-LCAE

91191 Gif-sur-Yvette

sylvain.magne@cea.fr

E. STUDER, R.SCARPA, D. ABDO, J.L. WIDLOECHER, O. NORVEZ

> CEA/DEN /DANS/DM2S/SFME/LTMF CEA SACLAY 91191 Gif-sur-Yvette

E. PORCHERON

IRSN, PSN-RES/SCA 91192 Gif-sur-Yvette

emmanuel.porcheron@irsn.fr

A. BENTAÏB, R. GROSSEUVRES

IRSN, PSN-RES/SAG, BP 17 92262 Fontenay-aux-Roses

CNRS - Institut ICARE

N. CHAUMEIX

1C route de la Recherche Scientifique 45071 Orléans

J. DHOTE, M. FREYSSINIER, A. RUFFIEN-CISZAK

ARCYS

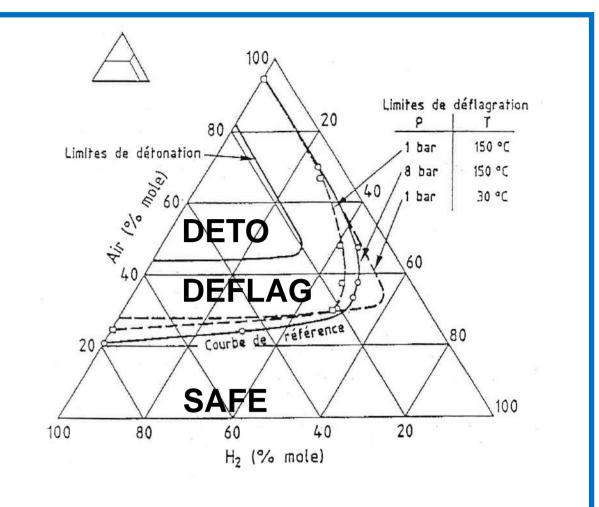
14 Pl. Marcel Dassault 31700 Blagnac

CONTEXTE: ACCIDENT GRAVE (AG)

Risque hydrogène

- Loss-of-Coolant Accident (LOCA): Oxydation des gaines de combustible,
- Attaque du radier en béton par le corium (cœur fondu) au stade avancé de l'accident
- → Émission de H₂ dans l'enceinte de confinement du Bâtiment Réacteur (BR),
- \rightarrow Risque de déflagration/détonation selon concentrations en H₂, air et H₂O.

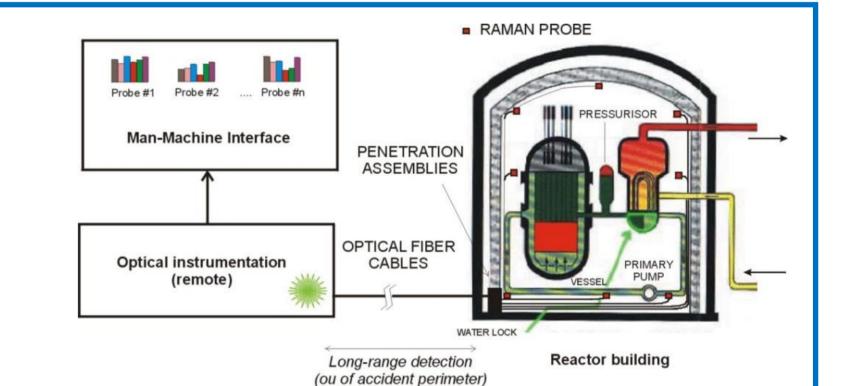
Spécifications AG de réacteur nucléaire (AIEA)


- Pression enceinte : 6 bar (absolue),
- Température enceinte : 170°C (hors combustion hydrogène),
- Dose / débit de dose d'irradiation : 5 MGy / 5 kGy/h (60Co ; 1,25 MeV),
- Chocs/vibrations (dimensionnement séisme).

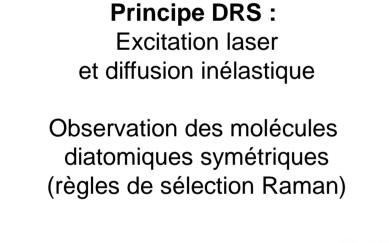
Solution palliative actuelle (EDF): Recombineurs Catalytiques Passifs (RCP)

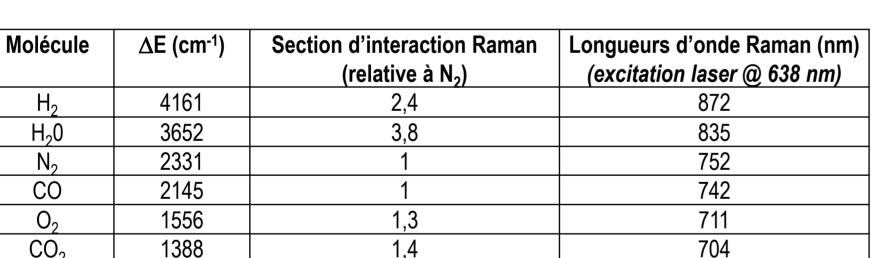
- > Estimation de la présence d'H₂ par la mesure de température (thermocouples) sur RCP,
- > Ne permet pas d'estimer un risque de déflagration/détonation, ni l'impact potentiel sur la structure et les équipements.

Accident de Fukushima (11/03/2011): INES 7/7 Explosion d'hydrogène et rupture de confinement. Dissémination des radionucléides dans l'atmosphère, évacuation des populations.

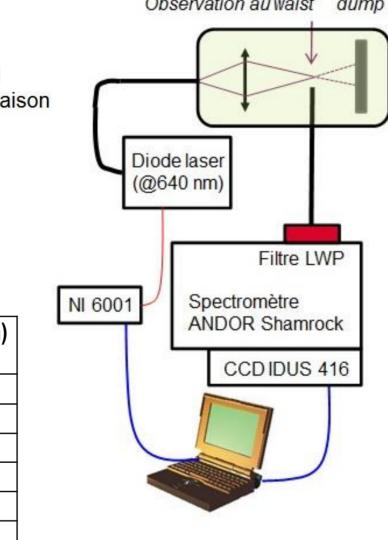

Diagramme ternaire [Shapiro-Moffette] en air - vapeur d'eau - hydrogène

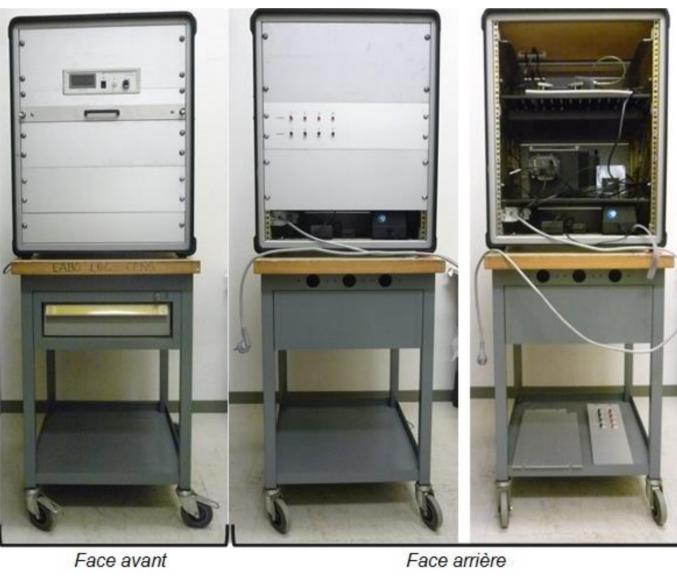
OBJECTIFS

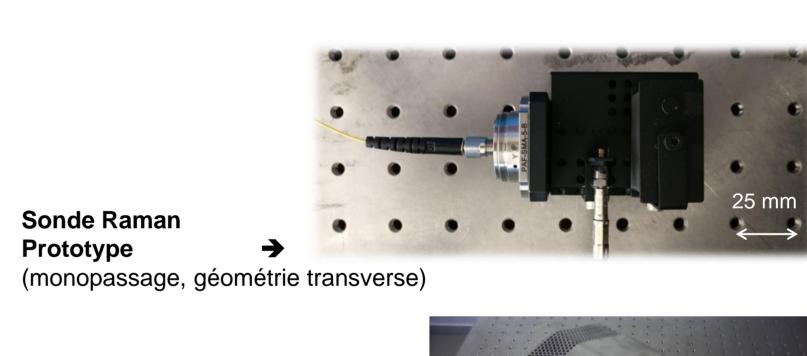

- Mesures in situ (sans prélèvement) et simultanées des pressions partielles en hydrogène, air, vapeur d'eau,
- Détection absolue ou relative à un gaz de référence (e.g. N₂),
- Estimation du risque de déflagration/détonation en plusieurs points à l'intérieur de l'enceinte (prise en compte des inhomogénéités),
- Mesure Raman déportée par fibres optiques, périodiquement au cours de l'accident (cadence ~ minute),
- Système d'acquisition placé hors périmètre radiologique, potentiellement secouru en électricité,


Raman AntiStokes

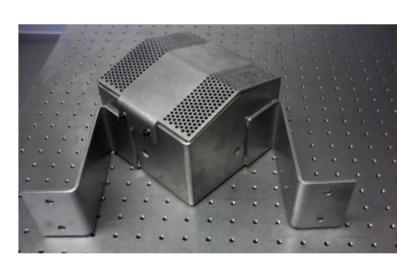
- Instrumentation de mesure unique (multipoints, multigaz).
- Détection de l'Interaction Corium-Béton (CO = traceur ICB),
- Possibilité de détection d'autres gaz non prévus (e.g. feu de combustion).



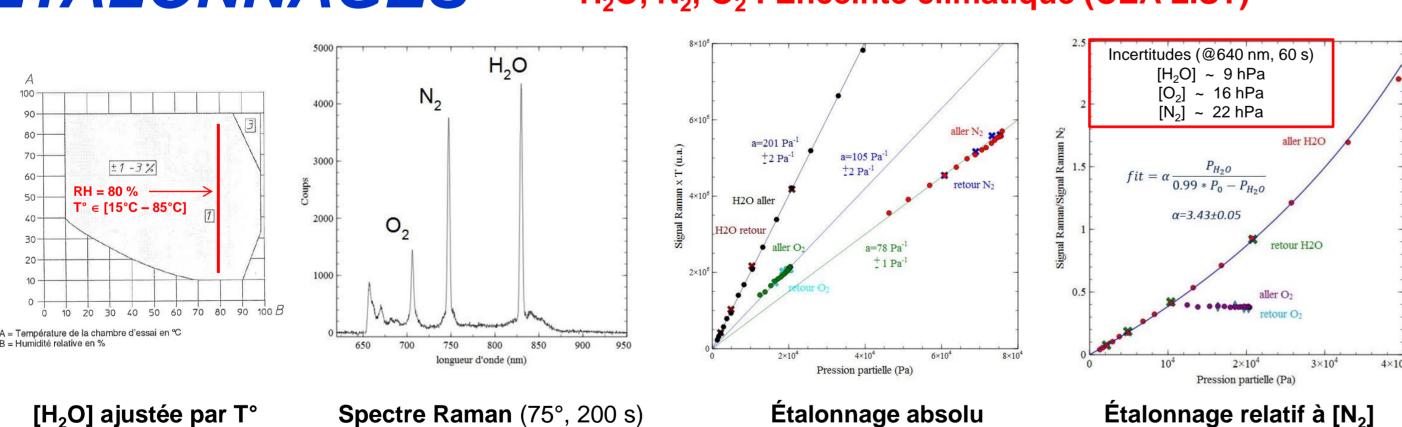

ANALYSE SÉLECTIVE et IN SITU DE GAZ par DIFFUSION RAMAN SPONTANÉE (DRS)



Raman Stokes

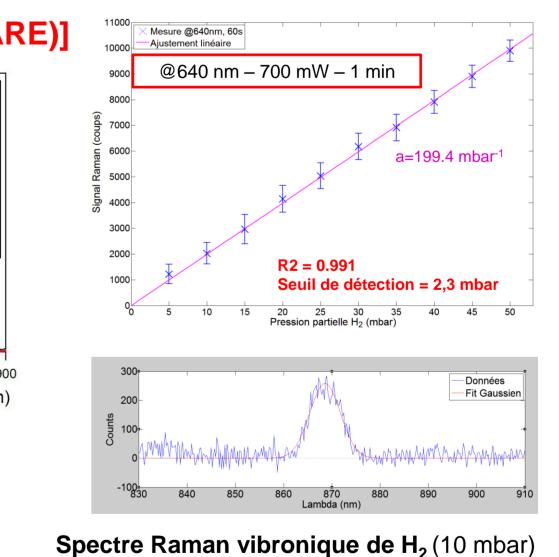


Rack Raman prototype 4-voies



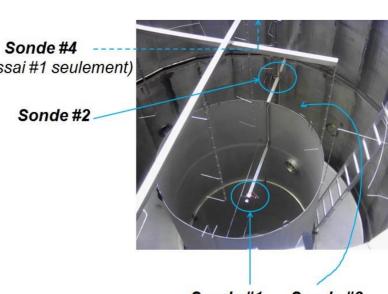
Boîtier de protection (fixation murale)

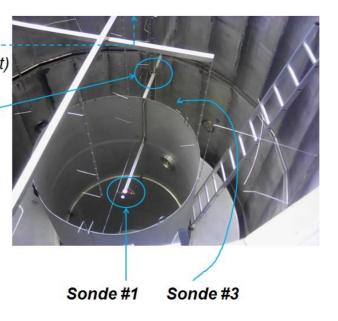
ÉTALONNAGES

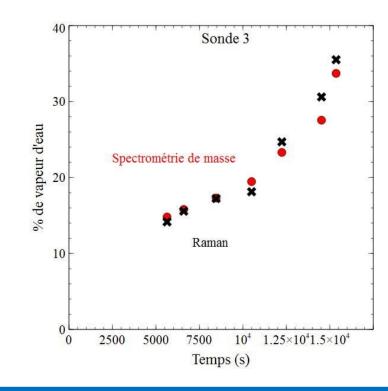

H₂O, N₂, O₂: Enceinte climatique (CEA LIST)

Thermohygromètre de référence, pression partielle d'air obtenue par soustraction à la pression totale (balise météo) \varnothing fibre laser = 100 μ m, \varnothing fibre Raman = 200 μ m, NA = 0,22

H₂: Tubes à chocs [SSEXHY (CEA), ENACCEF (CNRS-ICARE)] (vibronique) 30000 20000 H_2 $J 1 \rightarrow 3$ (rotationnel) (vibronique) Longueur d'onde (nm)


SSEXHY (CEA Saclay) Bouteille 95 % N_2 – 5 % H_2 , Vide avant injection et ajustement de la pression totale. \varnothing fibre laser = 100 μ m, \varnothing fibre Raman = 600 μ m, NA = 0,37




ESSAI PROTOTYPIQUE (MISTRA, CEA DEN)

Validation métrologique des sondes Raman en situation thermodynamique représentative (hors irradiation)

- √ 4 sondes Raman CEA (multipoints), sans boîtier, avec protection silicone (corrosion)
- √ 8 traversées étanches sur table [4 voies laser, 4 voies Raman]
- ✓ Contenu du mélange : O₂, N₂, H₂O, He (simulateur H₂)
- ✓ Monitoring de O_2 , N_2 , H_2O (spectro. de masse MS), pression, température (\rightarrow 130°C, \rightarrow 4,2 bar)
- ✓ Intercomparaison mesures Raman-MS de [H₂O] (prélèvement proche des sondes) : corrélation satisfaisante
- ✓ Les sondes Raman ont survécu à 4 essais consécutifs.

CONCLUSIONS

- Instrumentation Raman in situ, multigaz, multipoints, mise au point et qualifiée au plan métrologique pour le suivi du risque H₂ / AG
- Performance de mesure H₂ compatible avec les spécif. AG (résolution = 0,23 % P_{atm}, 1 minute, 700 mW, Ø fibre = 600 μm, NA = 0,37)
- Qualifications chocs / vibrations et irradiations en cours
- Prolongation de projet sur [2019-2022] : transfert industriel, qualifications.



Étude menée dans le cadre du projet MITHYGENE (ANR-11-RSNR-0015), financé par le Programme Investissements d'Avenir (PIA), en Recherche en Sureté Nucléaire et Radioprotection (RSNR)

