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ABSTRACT 
 
Data fusion algorithms make it possible to combine data         
from different sensors into symbolic representations      
such as environment maps, object models, and position        
estimates. The software community in space robotics       
lacks a comprehensive software framework to fuse and        
contextually store data from multiple sensors while also        
making it easier to develop, evaluate, and compare        
algorithms. The InFuse consortium, six partners in the        
industrial and academic space sector working under the        
supervision of a Program Support Activity (PSA)       
consisting of representatives from ESA, ASI, CDTI,       
CNES, DLR, UKSA, is developing such a framework,        
complete with a set of data fusion implementations        
based on state-of-the-art perception, localization and      
mapping algorithms, and performance metrics to      
evaluate them. This paper describes the architecture of        
this Common Data Fusion Framework and overviews       
the data fusion methods that it will provide for tasks          
such as localisation, mapping, environment     
reconstruction, object detection and tracking. 
 
1. INTRODUCTION 
 
In the context of perception, localization and mapping        
in space robotics, common evaluation and deployment       
frameworks are crucial for efficiently developing      
reliable robotic solutions. Qualification of software for       
space is indeed highly demanding. Methods and tools        
that make it easier to develop software for space and          
evaluate it as early as the prototype stages are highly          
valuable. This is the motivation of the European        

Commission's Horizon 2020 Strategic Research Cluster      
in Space Robotics Technologies, which comprises      
several projects to develop open, modular and reusable        
solutions in the domains of Robotic Control Operating        
Systems (RCOS) (Operational Grant 1, OG1) [1][2],       
autonomy (OG2) [3], perception and localisation (OG3)       
[4], and sensors (OG4) [5]. 
We are currently developing a software framework to        
implement, evaluate, and deploy data fusion algorithms       
for applications such as localisation, mapping,      
environment reconstruction, and object detection and      
tracking: a Common Data Fusion Framework (CDFF).       
We designed it to handle the challenges of developing         
and integrating sensor data fusion algorithms in a space         
context: (1) it will be compliant with the requirements         
that space grade software impose at interface level, and         
partially conform to lifecycle and coding guidelines       
based on ECSS-E-ST-40C standards (European     
Cooperation for Space Standardisation), (2) it will be        
easily deployable in ESROCOS [1][2] that uses TASTE        
modeling [6], (3) it will be experimentally validated by         
our porting of certain Data Fusion Nodes (DFNs) and         
Processing Compounds (DFPCs) to RTEMS, and (4) it        
will be validated in a partially hardware-accelerated       
setup, with some data fusion processing taking place on         
a FPGA coprocessor (e.g. Xilinx Zynq SoC). 
Although our framework targets space robotics, one of        
our design guidelines is also to facilitate its integration         
with RCOSes other than ESROCOS, in particular with        
ROCK (Robot Construction Kit) and the widely-used       
ROS (Robot Operating System). Furthermore, it comes       
with tools that make it possible to evaluate perception         
and localisation modules with framework-independent     

 
 



logged data and without using any RCOS. These two         
points make it RCOS-independent and therefore      
suitable for many terrestrial applications with minimal       
modification. Furthermore, the CDFF after its initial       
development will be available for the general public as         
open source project. 
Section 2 describes the architecture of the framework,        
and presents its main conceptual components and the        
corresponding software modules. Section 3 lists the data        
fusion methods that will be released with the CDFF.         
Section 4 describes the experimental validations that       
will demonstrate the usefulness of the framework, and        
Section 5 concludes the paper. 
 
2. ARCHITECTURE OF THE CDFF 
 
Data Fusion Nodes (DFN), defined as atomic       
processing units that perform a single data fusion        
function, constitute the core of the CDFF. Their        
atomicity makes them reusable and specialised.      
Consequently, they need to be connected and       
coordinated to each other in order to produce a         
particular data fusion product. We call a particular        
arrangement of DFNs, together with the controller that        
coordinates them, and the local data store (if any) for          
the data they use or generate, a Data Fusion Processing          
Compound (DFPC). Activation and deactivation of      
these DFPCs, as well as all other control and data flows           
within the framework, are the responsibility of an        
Orchestrator component. Finally, the last component of       
the framework is a Data Product Manager that stores         
and retrieves data from persistent memory on request        
from the Orchestrator. Fig. 1 shows a diagram that         
summarises this architecture. 
We have divided the CDFF into three component        
groups: (1) CDFF-Core comprises the DFNs, (2)       
CDFF-Support provides the tools to connect these into        
DFPCs, coordinate their operation, and manage their       
data products, and (3) CDFF-Dev is an environment for         
developing and evaluating data fusion algorithms,      
independently of the target robotic system and of its         
RCOS. 
 
2.1.​   Data fusion libraries 
 
A DFN is an atomic processing entity that fulfills a          
given data fusion function. It is the smallest unit of          
more a complex task, defined by its function, input and          
output. However, a DFN can actually be made up of a           
combination of elementary functions which may not       
expose their input/output. It presents two control       
interfaces: (1) ​configure() sets all the configuration       
parameters of the DFN, then (2) ​process() calls        
library functions to compute the outputs of the DFN. 
 

 
Figure 1. The Orchestrator manages the queries to the 

Central Data Product Manager, the activation of 
different Data Fusion Processing Compounds (DFPCs) 
and the operating modes of OG4 to fulfill requests from 

the planning algorithms in OG2. 
 
The DFN interface has been designed to be compatible         
with the ESROCOS RCOS. Nonetheless, DFNs do not        
need to be deployed as single ESROCOS modules.        
Modules instead can include entire DFPCs or even a         
complete set of DFPCs, Orchestrator and DPM. 
A DFN Template offers an abstraction of the essential         
characteristics of all DFNs, and allows their efficient        
management. The DFN Template incorporates the      
following information: (1) Generic Description, (2)      
Input(s) and Ouput(s) data, (3) Input(s) Parameters, (4)        
Estimated performance and cost, (5) External library       
dependencies, (6) Diagnostic capacities and (7) Unit       
test. Further details are presented in the deliverables        
corresponding to the Orbital and Planetary Track Test        
Plans [7, 8].  
 
2.2.​   Data fusion solutions 
 
CDFF-Support is a set of components designed to run         
on the target system along with the DFNs. These         
components provide supporting tools to use multiple       
DFNs together and in a coordinated fashion to produce         
a complete solution to a given data fusion requirement. 
Furthermore CDFF-Support provides the Data Products      
Manager (DPM) which stores a consistent      

 
 



representation of the environment, a history of acquired        
pre-processed sensor data, estimated poses, and a       
selection of the generated fused data products, to deliver         
them under request to OG2. Data is also stored locally          
within DFPCs so that it can be further exchanged         
between DFPCs as well as made available for the         
central DPM. The three main components of CDFF        
Support are the DFPCs, the Orchestrator, and the DPM.         
These components are depicted in Fig. 2.  
 

 
Figure 2. This diagram presents how the three 

components of CDFF-Support interact, and also how 
the CDFF interfaces with OG2 and OG4. 

 
 

DFPC : Lidar Map-Based Localisation 

Description of 
Data Flow 

- Input: lidar point cloud, pose 
estimate  

- Output: pose estimate  
- DFNs: PointcloudMatcher, 

PoseEstimator 

Data Product 
Management 

- Graph-Map: Pose Graph, Scan 
Map, Key Frames 

Description of 
Control 

1. getLocalMap 
2. PointcloudMatcher.doICP 
3. PoseEstimator.estimatePose 

Table 1. Description of the Lidar Map-Based 
Localisation DFPC. Similar descriptions will be 

available for each DFPC released with the CDFF 
 

Each DFPC is characterised by its function, the data         
streams that it receives and produces, including the        
corresponding metadata (for instance timestamps and      
geometric models), the operations that it can execute on         
demand, the DFNs it uses and how these are configured          

and set up. We use description templates such as the one           
in Tab. 1 to document DFPCs. The fields in this          
template are: (1) Description of Data Flow, (2) Data         
Product Management, and (3) Description of Control. 
 
The orchestrator has the main task of receiving queries         
from the Autonomy Framework (OG2) , activating and        
providing the fused data products to OG2. It acts as the           
central coordinator in the target system to control the         
activation states of DFPCs. The orchestrator has the        
following functions: (1) Interface between OG2 and       
OG3, (2) Translate the perception and localisation data        
into the format required by OG2, (3) Interface with the          
OG4 Instrument Control Unit (ICU) to configure a        
limited set of operational modes, (4) Interface with the         
Data Product Management (DPM) tool to provide       
mechanisms for querying fused data products and (5)        
Activation and deactivation of DFPCs according to data        
product requests and operational modes of the sensors.        
This last function does not interfere with internal DFPC         
decision making processes. 
The role of the DPM is to handle the selection,          
structuring and storage of all the data processed or         
produced by the CDFF that may be re-used, either         
internally by OG3 processes or to satisfy OG2 requests.         
Additionally, it is the interface through which robots        
expose and retrieve the CDFF data products in        
multi-robot scenarios, and also the interface through       
which ground operators can access the CDFF data        
products. The DPM can be seen a robotics-dedicated        
Geographic Information System (GIS). With respect to       
the activated DFNs and DFPCs in the CDFF, the DPM          
processes the data insertion requests. Internally, it       
manages all the spatial related data by implementing        
insertion, deletion or update functions, aiming at       
satisfying future needs for data products and storage        
constraints. 
 
2.3.​   Development toolkit 
 
CDFF-Dev provides tools for testing and prototyping       
data fusion solutions independent of the target RCOS.        
That includes a tool to replay, visualise and analyze logs          
in Python, and a framework to develop and test new          
DFNs that use signal processing or machine learning        
algorithms, in particular, for data filtering and outlier        
detection. None of these tools are deployed on the target          
system. In addition, code generators for DFN and DFPC         
scaffolds and corresponding Python bindings are      
provided. They are tools for developers of data fusion         
algorithms. 
The first step to evaluate or implement a DFN or DFPC           
using CDFF-Dev, is to generate a DFN or DFPC         
description file from the DFN or DFPC template,        
described in Sections 2.1 and 2.2. From the description         

 
 



file, the code of the interface is generated. As an          
example, Fig. 3 a) shows the DFN description file in          
YAML format and Fig. 3 b) displays the artifacts that          
are created by the DFN code generator. The Python         
bindings for DFNs and DFPCs are generated and        
bindings for InFuse data types are already provided to         
make the prototyping of DFNs and DFPCs more        
convenient in Python. 
 
name:​ LaserFilter 
implementations: 

    - NoiseFilter 

    - BoxFilter 

input_ports: 

    - name: scanSamples 

        type: LaserScan 

        doc: samples of a laser scan 

    - name: laser2BodyTf 

        type: RigidBodyState 

        doc: laser frame to body frame 

output_ports: 

    - name: filteredScans 

        type: LaserScan 

        doc: filtered laser scans 

(a) 
 

 
(b) 

 
Figure 3. (a) Example of a DFN description file based 

on YAML. (b) The DFN code generator creates an 
abstract C++ base class that defines the interface of the 

DFN, templates for concrete implementations and 
Python bindings for these implementations​. 

 
The interfaces of DFNs and DFPCs are kept as minimal          
as possible to ease integration to any target RCOS. The          
only dependencies are common base classes used by        

DFNs or DFPCs and the types that are used as inputs           
and outputs. This also simplifies the integration in the         
log replay tool of CDFF-Dev. 
Testing DFNs or DFPCs offline with log data is         
possible with the provided Python bindings. Logs are        
replayed with a data flow control module that emulates         
the communication layer of an RCOS and a log player          
that replays logged data chronologically. Two essential       
elements are needed for a user to be able to replay data            
logs from a desired RCOS: (1) a conversion from the          
data log format used by the RCOS to an intermediate          
format that is used by InFuse, and (2) a data-type          
conversion from the RCOS to InFuse data types. 
MessagePack is the intermediate log file format that        1

can be handled by CDFF-Dev. An example of the         
intermediate log format is shown in Fig. 4. A converter          
from ROCK’s log format pocolog is already available,        
and a ROCK base-types to InFuse data types is under          
development. The converters will be stored in open        
repositories to ease its reuse between developers. The        
intermediate log format can be loaded as InFuse types         
(C++) wrapped in Python. These will be given as input          
to the Python interface of DFNs or DFPCs. 
To replay log files, the user would provide the path to           
the logged data. While replaying log data, an        
orchestrator can suggest which DFPCs should be       
activated or deactivated. It will analyze incoming log        
data and the output of each active DFPC. The         
orchestrator in the final deployed setting receives       
requests from the Autonomy Framework (see Fig. 1, 2).         
When testing on CDFF-Dev the user, or a script,         
generates this requests. The Orchestrator then activates       
the DFPCs that produce the requested data products or         
triggers the operations that generate them. Additionally,       
the orchestrator can store the data in the Central Data          
Product Manager for later access. 
The current state of the system is stored in an EnviRe           
graph [9] while replaying log data. EnviRe provides        
various tools to store and handle environment       
representations. This data structure can be displayed       2

with the EnviRe visualiser. Objects for which a        
visualisation has been implemented can be displayed       
with the EnviRe visualiser, for example, point clouds,        
laser scans, or poses. 
For the development, analysis and comparison of new        
DFNs that use signal processing or machine learning        
algorithms, the framework pySPACE [10] is integrated       
in CDFF-dev. Log files can be annotated while        3

replaying log files and converted to a format that can be           
used by pySPACE. pySPACE provides numerous      
algorithms for signal processing and machine learning.       

1 ​https://msgpack.org 
2 ​http://envire.github.io 
3 ​https://pyspace.github.io/pyspace 
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They can easily compared with respect to various        
performance metric. The comparison can be run in        
parallel on a cluster. 
 
{‘/component.port’: 

    [{# sample 1 

      ‘sourceFrame’: ‘A’, 

      ‘targetFrame’: ‘B’, 

      ‘timestamp’:  

          {‘microseconds’:0}, 

      ‘pos’: [0, 0, 0], 

      ‘cov_position’: [ ... ], 

            ... 

     }, 

     {# sample 2 ... }, ... ], 

 ‘/component.port.meta’: 

    [ 

     ‘timestamps’: [ 1, 2, ... ], 

     ‘type’: ‘RigidBodyState’ 

    ], 

    ... 

} 

Figure 4. Example of the intermediate log format in         
Python syntax 
 
2.4.​   Integration of​ ​data fusion solution in RCOSes 
 
As part of our will to address a large community of           
users and ease the technological transfer from R&D        
studies to space products, the CDFF offers a convenient         
way to integrate DFNs/DFPCs into major open source        
robotics middlewares, namely ROS, ROCK, GenoM3      
[11] and YARP [12]. The core of the proposed approach          
is to use ASN.1 to specify data structures and binary          
serialisation mechanisms (implemented by ASN1SCC,     
an open source ASN.1 compiler for embedded systems        
[13]), in order to exchange data between components        
and also across the RCOS. 
To insure compatibility between the RCOS and       
programming languages like C++, python, javascript,      
and others, a common and basic ROS message        
(​asn1_bitstream.msg​) has been defined to     
transport the serialised ASN.1 data structures (see Fig.        
5). Almost all RCOSes provide some compatibility with        
ROS messages and communication protocol, and should       
be able to use the proposed message. The message is          
structured as follow: 
 
std_msgs/Header header 

# Message type 

string type 

# Serialisation method : 0 (UPER) 

uint8 sermethod 

# Serialised data 

uint8[] buf 

 
where the field ​buf​ contains serialised data. 
The Unaligned Packed Encoding Rules (UPER) are       

used by default for optimal compactness and encoding        
efficiency with low memory and low CPU footprints.        
However, Basic Encoding Rules (BER) or XML       
Encoding Rules (XER) could be used to facilitate        
communications with different programming languages.     
For instance, we are using BER to communicate with         
web applications through YARP. 
 

 
Figure 5. CDFF integration principle in an       
heterogeneous environment of RCOS. A simple ROS       
message is defined to transport serialised ASN.1 data        
structures. 
 
This has been applied to GenoM3 with ROS and YARP,          
and shown all the expected benefits. Moreover, the use         
of YARP allows us to go even further towards an          
optimal integration, as its allows local communication;       
in that particular case ASN.1 data structures are        
exchanged without any serialisation. 
There are many important advantages to the proposed        
method: clear data type / interface management with        
ASN.1, smooth integration effort in RCOS with ASN.1,        
enable inter RCOS communications, favor the      
separation between the RCOS and algorithms (this is        
even more true when GenoM3 is used). 
 
3. DATA FUSION METHODS 
 
The primary applications of InFuse are localisation and        
mapping, environment reconstruction, and object     
detection and tracking both in orbit and on the surface of           
other planets. We are currently implementing a number        
of DFPCs that address these applications, and will be         
released together with the framework itself, for others to         
use freely. The current list is given in Tab. 2. 
Detailed descriptions of all those DFPCs is provided in         
[D5.5] and [D5.6]. Short descriptions of some of them         
are given below as examples: 
 
● 3D Environment Reconstruction​: images    

collected by a stereo or a mono camera are         
projected in 3D coordinates and merged together       
by the estimation of an appropriate transform. 

● Short and Medium Range Object Detection​: 3D       
features are extracted from the 3D environment       
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map and a 3D model of the object, their matching          
identifies the object and its position. 

● Short and Medium Range Object Tracking​: a       
Kalman filter improves the estimated pose      
computed by the object detection DFPC. 

 

DFPCs for use in orbital situations 

Far-Range Object Tracking 
Mid- and Close-Range Target Detection 
Mid- and Close-Range Target Tracking 
Lidar-Based Tracking of a Target 
Mid- and Close-Range Visual Tracking of a Target 
3D Reconstruction 
3D Tracking 

DFPCs for use in planetary situations 

Visual Odometry (LAAS-CNRS) 
Visual Odometry (Magellium) 
Absolute Localisation 
Digital Elevation Mapping 
Lidar-Based SLAM 
Lidar-Based Localisation 
Visual SLAM 
Visual Map-Based Localisation 
Far-Range Tracking 
Mid-Range 3D Model Detection 
Mid-Range 3D Model Tracking 
Point-Cloud Model-Based Localisation with ICP 
Point-Cloud Matching 
Image Feature Detection and Matching 
Point-Cloud Triangulation and Construction 
Point-Cloud Model-Based Localisation with 
SHOT-Based Matching 
Bundle Adjustment and Optimisation 
Navigation Mapping 
Position Manager 

Table 2. Data Fusion Processing Compounds that are 
being implemented by the InFuse consortium as part of 

the Common Data Fusion Framework 
 
4. DEMONSTRATION SCENARIOS 
 
The perception, localisation, and mapping capabilities of       
the CDFF will be evaluated in indoor test facilities and          
in outdoor planetary analog sites. Evaluations are       
planned in both orbital and planetary situations. 
 
4.1.​   Orbital situations 
 
For the orbital scenarios, the integrated software will be         
deployed on specialised test platforms for each       
rendezvous/on-orbit servicing scenario. It consists in      

three main DFPCs: detection, tracking, and      
reconstruction at various ranges. These DFPCs rely on        
the data obtained mainly from a camera, a LIDAR,         
IMU, or combination of them. In order to validate the          
performance, we simulate motion trajectories of various       
type for the target (linear, spinning, tumbling) under        
different space lighting conditions (nominal,     
under-illuminated, over-illuminated). These conditions    
depend on the direction of the sun with respect to the           
sensor main axis using an on-ground simulation facility        
[6], shown in Fig. 6. 
 

 
Figure 6. Ground test facility of DLR for visual target 

tracking when approaching a target in close-range 
approach and visual servoing 

 
The rendezvous and on-orbit servicing simulator      
consists of a mock-up including a servicer and a target          
satellite, mounted on a six degrees of freedom Kuka         
robots, and a sun simulator. A robotic arm is also          
mounted on the servicer satellite for on-orbit servicing        
tasks such as capturing the target and refueling. The arm          
incorporates stereo cameras that are used for the        
close-range DFPC. Fig. 7 shows what a camera image         
looks like during on-orbit servicing in space. 
 
4.2.​   Planetary situations 
 
The CDFF will provide state-of-the-art algorithms to       
implement necessary perception, localisation and     
navigation functions for planetary exploration rovers.      
Four functional use cases will sustain the development        
of algorithms in the project: long traverse localisation,        
long traverse navigation, rendez-vous and return to       
base. Each use case involves a limited set of key          
functions that will be evaluated. 
The planetary scenario focuses on localisation and       
mapping within planetary environments. The sensors      
used include stereo vision, LIDAR, and inertial       
measurement. Navigation over long distances is enabled       
with DFPCs for localisation and for production of a         
Digital Elevation Map over long distances (~1km),       

 
 



guidance to a defined objective point on the map and          
rendezvous with a target there, and return-to-base       
functionality once the above objectives are met. In        
addition, DFPCs provide the capability to build 3D        
point cloud environment models incrementally through      
structure-from-motion and SLAM methods. 
Demonstrations of planetary scenarios are planned at       
CNES (see Fig. 8) and DLR facilities (see Fig. 9) with           
accurate ground truth of the terrain and the robot, as          
well as on the desert of Morocco. These will involve 5           
different rovers from three different institutions,      
CNRS/LAAS, DLR and DFKI (see Fig. 9, 10 and 11). 
 

 
Figure 7. A camera image representative of an on-orbit 

servicing scenario, with the Earth and deep space in 
background to the target. 

 

 
Figure 8. CNES/SEROM test field 

 

 
Figure 9. BB2 rover at DLR facilities for evaluation 

 

 
Figure 10. CNRS/LAAS Mana and Minnie rovers 

 

 
Figure 11. Sherpa Rover from DFKI 

 
 
 
 
 
 
 
 
 
 
 

 
 



5. CONCLUSION 
 
The Common Data Fusion Framework (CDFF)      
environment for development, testing and deployment      
of perception, localization and mapping algorithms in       
space robotic systems has been presented. The       
framework architecture has been designed to produce       
solutions with highly reusable components: ​Data      
Fusion Nodes​, ​Data Fusion Processing Compounds​,      
Orchestrator and ​Data Product Manager​. Furthermore,      
it allows to describe, implement and test offline the         
software independently of the Robotic Control      
Operating System that the final robotic system might        
use. 
A brief overview of the data fusion algorithms included         
in the CDFF has been provided, as well as how these           
are categorised and described in the framework through        
their description templates. Finally, the demonstration      
scenarios, which involves an orbital and a planetary        
track, have been briefly described. 
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