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ABSTRACT

Stance detection systems often integrate social clues in their algo-

rithms. While the in#uence of social groups on stance is known,

there is no evaluation of how well state-of-the-art community de-

tection algorithms perform in terms of detecting like-minded com-

munities, i.e. communities that share the same stance on a given

subject. We used Twitter’s social interactions to compare the results

of community detection algorithms on datasets on the Scottish Inde-

pendence Referendum and US Midterm Elections. Our results show

that algorithms relying on information di$usion perform better for

this task and con%rm previous observations about retweets being

better vectors of stance than mentions.

CCS CONCEPTS

•Applied computing→ Sociology; • Information systems→

Web mining;

KEYWORDS

Stance detection, Social media, Benchmarking

1 INTRODUCTION

The impact of communities and homophily1 on the construction

of people’s opinions have been studied by sociologists for decades.

Bourdieu [3] noted that choosing between opinions usually meant

choosing between groups supporting underlying opinions. Sub-

sequent studies showed that these observations still held true on

virtual social media, where users tended to interact with people

sharing their opinions rather than debating with opponents, a phe-

nomenon known as “echo chambers” [11, 13].

1Homophily is the principle that a contact between similar people occurs at a higher
rate than among dissimilar people.
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With the rapid growth of user-generated content, many re-

searchers decided to built opinion mining systems, to automatically

detect the subjective information users shared in their writings on

the web [12]. These systems led to stance detection, which can be

used in online social media to automatically determine the stance of

speci%c users in favor or against a particular topic. Successful detec-

tion of stance can be very useful in various downstream tasks, such

as information retrieval, text summarization or irony detection.

But an important question remains unanswered: can social inter-

actions and communities alone be used to determine users’ stances?

We decided to use the phenomenon of echo chambers and commu-

nity detection to try to answer this question. This paper makes

the following contributions: (a) a comparison of state-of-the-art

community detection algorithms, testing their ability to uncover un-

derlying groups who share a common stance and (b) a comparison

between the potential of retweet, mention, and their combination

graphs, as a means to uncover like-minded communities.

2 RELATEDWORK

The relationship between opinions and social relations has been

exploited in opinion mining for many years, with researchers try-

ing to deepen their analysis by using social theories [20]. Some

researchers, while not formally using community detection, inte-

grated some aspects of it to improve their opinion classi%cation

systems. Speriosu et al. [19] used for example label propagation

along the follower graph to assign polarity labels to tweets. On

the other hand, opinion was sometimes used as a feature to detect

like-minded community in conjonction with classical algorithms.

Dinsoreanu and Potolea [9] exploited opinions extracted from doc-

uments and the infomap community detection algorithm to detect

consistent communities of users.

Several benchmarks compared performances on ground-truth

communities and some systems are explicitely made for detect-

ing like-minded communities — like Deepak et al. [8] who used a

bottom-up hierarchical clustering approach — but we did not %nd a

benchmark focusing on how classical algorithms performed when

detecting like-minded communities.

3 EXPERIMENTAL SETUP

3.1 De!nitions

In this paper, we de%ne a community as a group of users interacting

for enough time and with enough commitment for connections to

appear in the cyberspace [17].



The stance of a user is its publicly stated viewpoint on a particular

subject. In our experiments, we focused on datasets with political

viewpoints. Each dataset contains N stances, with N ≥ 2. A stance

may be shared by users belonging to di$erent communities, and a

communitymay contain several stances. Our aim is to detect if some

algorithms obtain better performances in %nding communities as

homogeneous as possible in terms of stances, that is communities

where a large majority of users share the same stance. We will call

them like-minded communities.

3.2 Algorithms

We chose to compare in this study some popular and easily-accessible

graph-based community detection algorithms2, implemented in the

igraph library [6]. Table 1 lists some characteristics of the algo-

rithms presented below.

Table 1: Characteristics of community detection algorithms,

including complexity on typical sparse data – W stands for

edges weights and D for edges direction.

Family Algorithm W D Complexity

Modularity
maximisation

Fast-greedy [22] ✓ ✗ O (mn logn)
Leading eigenvectors [14] ✗ ✗ O (n2)
Multi-level [1] ✓ ✗ O (n)

Information Infomap [18] ✓ ✓ O (n (n +m))
di!usion Label propagation [16] ✓ ✗ O (n +m)

Random walk Walktrap [15] ✓ ✗ O (n2 logn)

Modularity maximisation. The modularity measures the number

of intra-community links versus links joining communities. Fast-

greedy attempts to maximize modularity of the community struc-

ture by merging pairs of communities with a bottom-up approach.

Leading eigenvectors uses a matrix-based approach analogous

to a spectral partitioning method. Multi-level iteratively merges

partitions representing local maxima of modularity at di$erent

scales.

Information di!usion. Infomap attempts to create communities

according to the #ow of information present in the network. Label

propagation is a simple iterative process where, at each step, each

node adopts the label most present in its neighbors.

Random walk. Walktrap detects communities based on a dis-

tance that quantify the structural similarity between vertices using

random walks.

3.3 Interactions

In this work we consider only the two main tweet-level interac-

tions3: retweets (RT) and mentions (@). Retweeting means sharing

another user’s tweet with one’s followers while mentioning is cit-

ing another user’s username. Three graphs are built per dataset:

one per interaction plus one taking into account both interactions

indi$erently. In these graphs, vertices are users and edges are in-

teractions. The weight of the edges are the number of times the

2We used non-parametric algorithms with respect to the number of communities to
detect since, as expressed in Section 3.1, the ideal situation for us is not having one
unique community per stance, but simply having homogeneous communities.
3We did not consider the Follow interaction because it is a user-level interaction, so
hardly comparable with retweets and mentions, and it shows a more passive way of
participating on Twitter.

users interacted. A vertex can represent an annotated or a non-

annotated user: annotated users are those for which we know the

stance, whereas non-annotated users appear in annotated users’

tweets because of mentions or retweets, but we do not know their

stance. When a directed graph is required by the algorithm, we

follow the information path: from retweeted users to users sharing

tweets, and from mentioning users to users being cited.

3.4 Scoring functions

To compare the performance of algorithms on like-minded commu-

nities we used the purity [10] and the normalized mutual informa-

tion [7], de%ned as follows:

Purity(Ω,C) =
∑
k

maxj |ωk∩c j |
N NMI(Ω,C) =

2×I (Ω,C)
H (Ω)+H (C)

withΩ the partition of detected communities,C the set of stances,

ωk the set of annotated users in communityk , c j the set of annotated

users in class j, N the total number of annotated users in P , I the

mutual information, and H the entropy.

Purity is known to be biased in favor of small communities

but in our case, since we want communities as homogeneous as

possible, it is still a valid indicator. To examine the consistency of

the community detection, we also used the standard deviation (SD)

of the intra-communities purity scores.

4 EXPERIMENTS

4.1 Datasets

The use of community detection algorithms as a mean to detect

like-minded communities forces us to have a non-negligible amount

of interactions between the users. For this reason we cannot use

datasets built around keywords, like the ones featured in the task 6

of SemEval20164 because users in this kind of datasets seldom inter-

act with one another. We used two datasets published by Brigadir

et al. [4], both constructed by gathering all available tweets for

a %xed subset of users (see Table 2). DMI-TCAT [2] collected the

tweets from Twitter API, based on the released users accounts and

tweets ids.

Scottish Independence Referendum (SR). This dataset was origi-

nally collected from Aug 11th to Oct 19th 2014. It re#ects the debate

around the Scottish Independence referendum of the 18th of Sep-

tember 2014. The o*cial “Yes” and “No” campaigns were very active

on social media. To be included as a “Yes” or “No” supporter, users

had to be part of the Scottish Independence Referendum Electoral

Commission or unambiguously self-identify as such on their pro%le.

Table 2: Dataset sizes5

Dataset Stance
Original Retrieved

Users Tweets Users Tweets

SR
Yes 618 799,096 535 344,563
No 610 570,024 508 263,569

ME
Democrat 942 89,296 701 56,671
Republican 997 80,840 756 56,506

4http://alt.qcri.org/semeval2016/task6/
5The di$erences between the original sizes and the retrieved ones are due to users
having deleted their tweets and their accounts since the initial crawl.



USMidterm Elections (ME). This dataset concerns the USMidterm

elections held on the 4th of November 2014 and was originally col-

lected from Oct 10th to Nov 20th 2014. Third parties were ignored

so users are either “Democrat” or “Republican”. They were selected

thanks to several sources listing o*cial Twitter accounts of cam-

paigners in these elections.

4.2 Scores on all users

Table 3 presents some characteristics of the resulting graphs. Given

the construction method for the graphs, we do not have annotated

users in all communities. In order to measure consistent scores,

we exclusively consider communities having at least 3 annotated

users (see Table 4). We will discard from the observations below

the scarce cases where we only have one community to analyse,

since standard deviation and NMI cannot be calculated on a unique

community.

Table 5 presents the scores by interaction and algorithm. The

%rst observation we can make is that retweets appear to be more

important in terms of stance di$usion. For retweets, while almost all

algorithms obtain a purity score of more than 90%, label propaga-

tion and infomap obtain smaller standard deviation values. Label

propagation also obtain the best NMI scores for both dataset. For

mentions, results are more variable. Infomap, Fast-greedy and

Table 3: Characteristics of the constructed graphs – D is the

density measure and C the clustering coe"cient.

# Vertices # Edges
Degrees

D C
Mean Med Max

Using interactions between all users

SR
RT 78,854 266,146 7 1 7,391 10−5 0.019
@ 59,122 200,631 7 1 1,721 10−4 0.044
Both 120,165 443,322 7 1 7,785 10−5 0.031

ME
RT 149,137 291,137 4 1 10,125 10−5 0.001
@ 23,148 35,141 3 1 2,278 10−4 0.004
Both 163,646 320,007 4 1 10,288 10−5 0.001

Using interactions between annotated users only

SR
RT 898 16,938 38 21 302 0.042 0.298
@ 258 278 2 1 237 0.008 0.002
Both 902 16,938 38 21 302 0.041 0.298

ME
RT 973 2,056 4 2 69 0.004 0.134
@ 126 125 2 1 122 0.015 0.000
Both 989 2,180 4 2 123 0.004 0.106

Table 4: Number of communities containing at least 3 anno-

tated users – the algorithms are represented by their initials.

Algorithm
Scottish Referendum Midterms Elections

RT @ Both RT @ Both

Using interactions between all users

Modularity
maximisation

F 15 34 27 39 45 39
LE 19 1 1 3 19 1
M 17 36 29 43 47 43

Information I 102 85 38 112 159 103
di!usion LP 4 2 3 74 135 98

Random walk W 15 34 27 39 45 37

Using interactions between annotated users only

Modularity
maximisation

F 4 2 4 49 2 49
LE 4 2 2 33 2 n/a
M 4 2 5 46 2 40

Information I 138 2 137 111 2 122
di!usion LP 4 2 4 94 2 94

Random walk W 4 2 4 49 2 45

Walktrap obtain good performances. Taking into account both in-

teractions does not seem to o$er an advantage, since purity andNMI

scores for these graphs are inferior to those of the retweet graphs.

All in all, algorithms based on information di$usion seem to have

a slight advantage. They consistenly detect communities with a

high purity, and despite the fact that they detect more communities,

they still obtain better NMI scores than the other algorithms most

of the time. For all graphs, multi-level and label propagation

are the quickest algorithms with a runtime under 2 seconds. The

slowest ones are fastgreedy and walktrap, with a runtime up to

25 minutes for the Scottish Independence Referendum dataset, and

up to 75 minutes for the US Midterm Elections dataset. These obser-

vations are not really surprising given the respective complexities

of the algorithms (see Table 1).

4.3 Scores on annotated users only

One important caveat of this analysis is of course the communities

without annotated users. Indeed, since all interactions are used to

Table 5: Scores for the SR and ME datasets – best scores are

presented in bold and cases for which we have one commu-

nity only to analyse in gray and in italic (see table 4).

Algorithm
Scottish Referendum Midterms Elections

RT @ Both RT @ Both

Using interactions between all users

P
u
ri
ty Modularity

maximisation

F 0.97 0.78 0.86 0.93 0.63 0.77
LE 0.87 0.51 0.51 0.62 0.58 0.51
M 0.97 0.72 0.84 0.87 0.66 0.78

Information I 0.96 0.80 0.88 0.97 0.79 0.91
di!usion LP 0.98 0.53 0.54 0.93 0.78 0.90

Random walk W 0.97 0.78 0.86 0.93 0.63 0.77

S
D

Modularity
maximisation

F 0.16 0.13 0.15 0.14 0.12 0.15
LE 0.15 n/a n/a 0.24 0.15 n/a
M 0.17 0.15 0.16 0.17 0.12 0.17

Information I 0.10 0.19 0.17 0.10 0.18 0.15
di!usion LP 0.02 0.33 0.24 0.09 0.17 0.15

Random walk W 0.16 0.13 0.15 0.14 0.12 0.15

N
M
I Modularity

maximisation

F 0.55 0.12 0.25 0.28 0.02 0.12
LE 0.33 n/a n/a 0.14 0.023 n/a
M 0.52 0.08 0.21 0.22 0.04 0.13

Information I 0.22 0.13 0.21 0.24 0.11 0.20
di!usion LP 0.85 0.01 0.01 0.25 0.11 0.20

Random walk W 0.55 0.12 0.25 0.28 0.02 0.12

Using interactions between annotated users only

P
u
ri
ty Modularity

maximisation

F 0.99 0.76 0.99 0.98 0.58 0.94
LE 0.98 0.76 0.86 0.86 0.58 n/a
M 0.99 0.76 0.98 0.98 0.58 0.94

Information I 0.96 0.75 0.97 0.97 0.58 0.96
di!usion LP 0.99 0.74 0.98 0.98 0.58 0.94

Random walk W 0.99 0.76 0.99 0.98 0.58 0.94

S
D

Modularity
maximisation

F 0.01 0.06 0.01 0.06 0.06 0.10
LE 0.02 0.06 0.16 0.07 0.06 n/a
M 0.01 0.06 0.01 0.06 0.06 0.10

Information I 0.09 0.09 0.09 0.08 0.06 0.09
di!usion LP 0.01 0.09 0.01 0.08 0.06 0.09

Random walk W 0.01 0.06 0.01 0.06 0.06 0.10

N
M
I Modularity

maximisation

F 0.88 0.18 0.86 0.32 0.001 0.29
LE 0.69 0.18 0.50 0.26 0.001 n/a
M 0.84 0.18 0.81 0.32 0.001 0.29

Information I 0.22 0.15 0.23 0.24 0.001 0.23
di!usion LP 0.86 0.15 0.85 0.27 0.001 0.24

Random walk W 0.88 0.18 0.86 0.32 0.001 0.29



construct the retweets and mentions graphs, we have a majority

of users for whom we do not know the stance, and therefore a lot

of communities for which we cannot evaluate stance homogeneity

since they do not contain enough annotated users. To overcome

this issue, we opted for detecting communities on the sub-graphs

representing the interactions between annotated users only (see

Table 3 for sub-graphs characteristics).

The results (see Table 5) show again that, even when using

only the interactions between the subset of users used to build the

datasets, stance can be determined by community. 6 By focusing

on annotated users only, we obtain for almost all graphs better

scores. Interestingly, for retweets, algorithms based on information

di$usion do not seem to have an advantage over the others, contrary

to the previous section. This may be due to the fact that focusing

on interactions between annotated users does not allow to properly

model the di$usion of information.

5 DISCUSSION

Retweet graphs generally seem to be a better way to detect homo-

geneous like-minded communities than mention graphs. This is

consistent with the previous observations made in the literature so

far [5].

When considering retweet interactions, the leading algorithms

are label propagation and infomap, two algorithms relying on

information di$usion. This is a valuable observation, suggesting

that, in a certain way, stance “follows” information on Twitter.

These observations suggest that to e*ciently detect like-minded

communities on Twitter, it is a better idea to look at the information

circulating between users rather than considering purely structural

criteria. However the direction of di$usion does not seem to be

important, since the implementation of label propagation we used

in this work considers undirected edges. For mentions however,

we can see that these algorithms do not really have an advantage

compared to others, suggesting that mention graphs do not have

the same underlying principles that retweet graphs, stressing a

di$erence in use between these interactions.

This work featured only two interactions taken separately and

focuses mainly on atypical users, limiting the generalization ca-

pability of this study. The formation and di$usion of stances is

a much more complex process, still hard to grasp by computing

methods. We may assume that every interactions on social media

has its own role in this process. It would be interesting to expand

this comparison to more algorithms, datasets (including some with

more than 2 stances), and interactions, and to see how well the

systems taking into account several interactions [21] perform on

like-minded communities.

6 CONCLUSION

In this article, we compare the performances of three classes of

community detection algorithms for the detection of like-minded

communities on Twitter. Despite the growing integration of social

features in opinion mining systems, there is no existing comparison

of state-of-the-art community detection methods on this particular

task.

6Wemust note that leading eigenvector does not succeed in extracting communities
on the graph taking into account both interactions (see Table 4).

We found out that algorithms based on information di$usion

seem to perform better when using retweet interactions and upheld

the fact that retweets are a better vector of opinion than mentions.

Overall, label propagation seems to be a good choice for detecting

like-minded communities, it achieves excellent results and is one

of the fastest among the algorithms we benchmarked.

Our results con%rms that popular community detection algo-

rithm can indeed be used as-is to reliably detect users’ stance under

certain conditions.

REFERENCES
[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. 2008. Fast Unfolding of Communities in Large Networks. JSTAT 10 (2008),
P10008. DOI:http://dx.doi.org/10.1088/1742-5468/2008/10/P10008

[2] Erik Borra and Bernhard Rieder. 2014. Programmed Method: Developing a
Toolset for Capturing and Analyzing Tweets. AJIM 66, 3 (2014), 262–278. DOI:
http://dx.doi.org/10.1108/AJIM-09-2013-0094

[3] Pierre Bourdieu. 1973. L’opinion Publique n’existe pas. Les temps modernes 318
(1973), 1292–1309.

[4] Igor Brigadir, Derek Greene, and Pádraig Cunningham. 2015. Analyzing Dis-
course Communities with Distributional Semantic Models. InWebSci. 1–10. DOI:
http://dx.doi.org/10.1145/2786451.2786470

[5] M. D. Conover, J. Ratkiewicz, M. Francisco, B. Gonçalves, A. Flammini, and F.
Menczer. 2011. Political Polarization on Twitter. In ICWSM. 89–96.

[6] Gabor Csardi and Tamas Nepusz. 2006. The Igraph Software Package for Complex
Network Research. InterJournal Complex Systems (2006), 1695.

[7] Leon Danon, Albert Díaz-Guilera, Jordi Duch, and Alex Arenas. 2005. Comparing
Community Structure Identi%cation. JSTAT 09 (2005), P09008. DOI:http://dx.doi.
org/10.1088/1742-5468/2005/09/P09008

[8] Talasila Sai Deepak, Hindol Adhya, Shyamal Kejriwal, Bhanuteja Gullapalli,
and Saswata Shannigrahi. 2016. A New Hierarchical Clustering Algorithm to
Identify Non-Overlapping Like-Minded Communities. In HT. 319–321. DOI:

http://dx.doi.org/10.1145/2914586.2914613
[9] Mihaela Dinsoreanu and Rodica Potolea. 2015. Opinion-Driven Communi-

ties’ Detection. IJWIS 10, 4 (2015), 324–342. DOI:http://dx.doi.org/10.1108/
IJWIS-04-2014-0016

[10] M. Girvan and M. E. J. Newman. 2002. Community Structure in Social and
Biological Networks. NAS 99, 12 (2002), 7821–7826. DOI:http://dx.doi.org/10.
1073/pnas.122653799

[11] Shanto Iyengar and Sean J. Westwood. 2015. Fear and Loathing across Party
Lines: New Evidence on Group Polarization. AJPS 59, 3 (2015), 690–707. DOI:
http://dx.doi.org/10.1111/ajps.12152

[12] Bing Liu. 2012. Sentiment Analysis and Opinion Mining. Synthe-
sis Lectures on HLT 5, 1 (2012), 1–167. DOI:http://dx.doi.org/10.2200/
S00416ED1V01Y201204HLT016

[13] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a
Feather: Homophily in Social Networks. Annual Review of Sociology 27, 1 (2001),
415–444. DOI:http://dx.doi.org/10.1146/annurev.soc.27.1.415

[14] M. E. J. Newman. 2006. Finding Community Structure in Networks Using
the Eigenvectors of Matrices. PRE 74, 3 (2006). DOI:http://dx.doi.org/10.1103/
PhysRevE.74.036104

[15] Pascal Pons and Matthieu Latapy. 2005. Computing Communities in Large
Networks Using Random Walks. In ISCIS. Vol. 3733. 284–293. DOI:http://dx.doi.
org/10.1007/11569596_31

[16] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. 2007. Near Linear
Time Algorithm to Detect Community Structures in Large-Scale Networks. PRE
76, 3 (2007). DOI:http://dx.doi.org/10.1103/PhysRevE.76.036106

[17] Howard Rheingold. 1993. The virtual community: Finding commection in a com-
puterized world. http://www.rheingold.com/vc/book/

[18] M. Rosvall, D. Axelsson, and C. T. Bergstrom. 2009. The Map Equation. EPJ ST
178, 1 (2009), 13–23. DOI:http://dx.doi.org/10.1140/epjst/e2010-01179-1

[19] Michael Speriosu, Nikita Sudan, Sid Upadhyay, and Jason Baldridge. 2011. Twit-
ter Polarity Classi%cation with Label Propagation over Lexical Links and the
Follower Graph. In EMNLP. 53–63.

[20] Jiliang Tang, Yi Chang, and Huan Liu. 2014. Mining Social Media with Social
Theories: A Survey. ACM SIGKDD Explorations Newsletter 15, 2 (2014), 20–29.
DOI:http://dx.doi.org/10.1145/2641190.2641195

[21] Lei Tang, Xufei Wang, and Huan Liu. 2012. Community Detection via Heteroge-
neous Interaction Analysis. DMKD 25, 1 (2012), 1–33. DOI:http://dx.doi.org/10.
1007/s10618-011-0231-0

[22] Ken Wakita and Toshiyuki Tsurumi. 2007. Finding Community Structure in
Mega-Scale Social Networks. In WWW. 1275. DOI:http://dx.doi.org/10.1145/
1242572.1242805


