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Unsupervised Features Extraction from Asynchronous Silicon

Retina through Spike-Timing-Dependent Plasticity

Olivier Bichler, Damien Querlioz, Simon J. Thorpe, Jean-Philippe Bourgoin and Christian Gamrat

Abstract—In this paper, we present a novel approach to
extract complex and overlapping temporally correlated features
directly from spike-based dynamic vision sensors. A spiking
neural network capable of performing multilayer unsuper-
vised learning through Spike-Timing-Dependent Plasticity is
introduced. It shows exceptional performances at detecting
cars passing on a freeway recorded with a dynamic vision
sensor, after only 10 minutes of fully unsupervised learning.
Our methodology is thoroughly explained and first applied to
a simpler example of ball trajectory learning. Two unsuper-
vised learning strategies are investigated for advanced features
learning. Robustness of our network to synaptic and neuron
variability is assessed and virtual immunity to noise and jitter
is demonstrated.

I. INTRODUCTION

THE overwhelming majority of vision sensors and pro-

cessing systems currently in use are frame-based, where

each frame is generally passed through the entire processing

chain. Now for many applications, especially those involving

motion processing, successive frames contain vast amounts

of redundant information, which still need to be processed.

This can have a high cost, in terms of computational power,

time and energy. For motion analysis, local changes at the

pixel level and their timing is really the only information one

needs, and it may represent only a small fraction of all the

data transmitted by a conventional vision sensor of the same

sensibility.

Spiking silicon retinas, which are directly inspired from

the way biological retinas work, are a direct response to

the problematic exposed above. Instead of sending frames,

silicon retinas use Address-Event Representation (AER) to

asynchronously transmit spikes in response to local change

in temporal and/or spatial contrast [1] [2]. In these devices,

also called AER dynamic vision sensors, the addresses of the

spikes are transmitted asynchronously (in real time) through

a single serial link. Although relatively new, several types of

spiking silicon retinas have already been successfully built,

yet still with limited resolution of typically 128x128 pixels

or less.
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However, the undeniable advantages of silicon retinas are

also what makes them more difficult to use, because most

of the classic vision processing algorithms are inefficient or

simply do not work with them [3]. Classical image-based

convolutions for example are difficult to implement, because

pixels activity is asynchronous and the AER data stream is

continuous. Spike- or AER-based convolutional networks do

exist [4], however the weights of the convolution kernel are

often learned off-line and using a frame-based architecture.

More importantly, those approaches are essentially based on

the absolute spike rate of each pixel, thus ignoring much

of the information contained in the relative timing between

individual spikes [5].

To overcome these difficulties, we propose a novel ap-

proach that fully embraces the asynchronous and spiking

nature of the these sensors and is able to extract complex

and overlapping temporally correlated features in a robust

and completely unsupervised way. We show a new way of

using Spike-Timing-Dependent Plasticity (STDP) to process

true dynamic spike-based stimuli, recorded from an actual

AER sensor, with what we hope will become a standard test

case for such algorithms. We show how motion sequences

of individual objects can be learned from complex mov-

ing sequences with a feed-forward multilayer unsupervised

learning spiking neural network. This work, which extends

some of the concepts introduced in [6], takes full benefit of

the relative spike timing of the sensor’s pixels and shows

exceptional performances, considering the simplicity and the

unsupervised nature of the proposed learning scheme. These

characteristics also make this approach an excellent candidate

for efficient future hardware implementations, that could take

advantage of recent developments in memristive nano-devices

[7].

II. METHODOLOGY

In this paper we simulate a spiking neural network that

performs pattern recognition based on AER retina data. To

this end, a special purpose C++ event-based simulator was

developped and is used for all the simulations. Event-based

simulation is particularly well adapted for processing AER

data flow, unlike traditional clock-driven neural network sim-

ulators, which generally focus more on biological modeling

accuracy than efficient hardware simulation. Our simulator is

therefore capable of processing 128x128 AER retina data in

near real-time on a standard desktop CPU.



A. Learning Rule

The learning rule, common to all the simulations presented

in this paper, is a simplified STDP rule. STDP was demon-

strated in biological neurons about a decade ago in [8] [9],

and is now believed to be a foundation of learning of the

brain [10] and is widely used, though with many variations,

in both computational neuroscience [11] [12] and machine

learning [13] [14] [15]. In our case, we use a simple rule

where all the synapses of a neuron are equally depressed

upon receiving a post-synaptic spike, except for the synapses

that were activated with a pre-synaptic spike a short time

before, which are strongly potentiated. It is important to note

that all the other synapses are systematically depressed, even

if they were never activated. This behavior therefore cannot

be entirely modeled with a classical STDP window function

∆w = f(tpost − tpre). It is also not accurate to consider

the synapses as being leaky, or volatile, because they only

undergo Long-Term Depression (LTD) when the neuron is

activated. If the neuron never fires, the weight of the synapses

remains constant. The implications of this learning scheme

are thoroughly discussed in the next section.

The general form of the weight update equations in the

Long-Term Potentiation (LTP) case is the following:

∆w+ = α+. exp

(

−β+.
w − wmin

wmax − wmin

)

(1)

In the LTD case, the equation is quite similar:

∆w
−
= α

−
. exp

(

−β
−
.

wmax − w

wmax − wmin

)

(2)

where α+ > 0, β+ ≥ 0, α
−

< 0 and β
−

≥ 0 are four

parameters. w is the weight of the synapse and is allowed

to change between wmin and wmax. Depending on the two

β parameters, one can have either an additive (β = 0) or a

pseudo-multiplicative weight update rule, which can model

different possible hardware (or software) implementations

without compromising the working principle of the proposed

scheme.

B. Spiking Neuron Model

In our event-driven simulator, a spike event at time tspike
is modeled as the unit impulse function δ(t−tspike). Between

two spikes, the integration u of the leaky integrate-and-fire

neuron is the solution of the simple differential equation

u+ τleak.
du

dt
= 0 (3)

The neuron’s integration state only needs to be updated

at the next spike event, at time tspike, where the synaptic

weight w of the incoming spike is added to the integration :

u = u. exp

(

−
tspike − tlast spike

τleak

)

+ w (4)

When the integration u reaches the neuron’s threshold, a

new spike event is created and sent to every output synapses.

The integration is then reseted to zero and cannot increase

again until the end of a refractory period Trefrac.

C. Lateral Inhibition

When a neuron spikes, it disables all the other neurons

during a period Tinhibit, during which no incoming spike

is integrated. This inhibiting period also adds to the refrac-

tory period of the neurons recently activated, in the case

where Tinhibit < Trefrac. Because the neurons are leaky,

if Tinhibit >> Tleak, one can consider that the neurons are

also reset after the lateral inhibition.

D. AER data

The AER data used in this paper were either recorded

with the TMPDIFF128 DVS sensor [1] and downloaded from

this website [16] or generated with the same format. An

AER dataset simply consist of a list of events, with for each

event, the address of the emitting pixel of the retina, the

time-stamp of the event and its type. For the TMPDIFF128

sensor, a pixel generates an event each time the relative

change of its illumination intensity reaches a positive or

a negative threshold. Therefore, depending on the sign of

the intensity change, events can be of either type ON or

type OFF, corresponding to a increase or a decrease in pixel

illumination, respectively.

III. EXPERIMENTS AND RESULTS

In this section, we first present a simple learning case of

short ball trajectories with artificially created AER data se-

quences, before moving to a real-life learning demonstration

with a recorded sequence from a 128x128 AER silicon retina.

Finally, we show the robustness of our approach, to external

noise and jitter as well as to internal network parameters

such as the weight evolution parameters and the neurons

parameters.

A. Partial Trajectory Extraction

For this first experiment, 8 computer generated AER data

sequences where created, each representing a ball trajectory

in a different direction, as shown figure 1. The characteristics

of the generated data are identical to actual data recorded

with the TMPDIFF128 sensor, with a lower resolution of

16x16 pixels. Every input pixel requires two synapses, to

send the ON- and OFF-type events respectively, which makes

a total 2∗16∗16 = 512 input addresses. Our neural network

is constituted of 48 output neurons, with 512 synapses per

neurons (see figure 2), each synapse being addressed by its

corresponding event. Lateral inhibition is also implemented

16 pixels

8 directions
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Ball velocity: 480 pixels/s

Fig. 1. Characteristics of the computer generated ball trajectories used as
input stimuli of the network. A ball is moving in one of 8 directions at a
480 pixels/s velocity on a 16x16 pixels grid. AER events are generated by
mimicking the properties of a spiking silicon retina.
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Fig. 2. Neural network topological overview for partial trajectory extraction.
It is a one-layer feedforward fully connected network, with complete lateral
inhibition, from each neuron to every other neuron. There is no spatially
specific inhibition between neurons.

and each neuron inhibits the integration of all the other

neurons during a time Tinhibit when it spikes.

When a neuron spikes at time tspike, it potentiates the

synapses that where the most recently activated, from tspike−
TLTP to tspike, and depresses all its other synapses. This

increases the sensitivity of the neuron to the specific pattern

that activated it, making it more likely to spike for a similar,

correlated pattern, in the future. Because the neuron is leaky,

only the contribution of sequences of spikes activating a

majority of strongly potentiated synapses in a short time has

a significant chance to rise the neuron’s integration above

the threshold. This ensure that the neuron is only sensitive

to a specific pattern, typically a cluster of spikes strongly

temporally correlated. The figures 3 and 4 show the activity

of the network before and after the learning respectively.

Two mechanisms allow competitive and complementary

learning of neurons [17]. The first one is lateral inhibition,

which is fundamental to enable multiple neurons to learn

� �� � �� 
	

Fig. 3. Spiking events emitted by the output neurons (vertical axis) as a
function of time (horizontal axis). The direction of the moving ball presented
is indicated at the top of the plot. Initially, the weight of the synapses is on
average equal to 80% of the maximum weight. The neurons are therefore
very responsive, with no selectivity to the different trajectories, as can be
seen when the 8 AER stimuli are presented in order, one every 200 ms.

multiple patterns. Without lateral inhibition, all the neurons

would end up learning the same pattern. The inhibition time

Tinhibit actually controls the minimum time interval between

the chunks a trajectory can be decomposed into, each chunk

being learned by a different neuron, as seen in figure 5.

The second mechanism is the refractory period of the neuron

itself, which contributes with the lateral inhibition to adapt

the learning dynamic (in how many chunk the trajectory

should be decomposed) to the input stimuli dynamic (how

fast the motion is). If for example the motion is slow

compared to the inhibition time, the refractory period of the

neurons ensures that a single neuron cannot track an entire

trajectory by repetitively firing and adjusting its weights to

the slowly evolving input stimuli. Such a neuron would

be “greedy”, as it would continuously send burst of spikes

in response to various trajectories, when the other neurons

would never have a chance to fire and learn something useful.

After the learning, one can disable the lateral inhibition to

verify that the neurons are indeed selective enough to be only

sensitive to the learned pattern, as deduced from the weights

reconstruction. From this point, even with continued stimuli

presentation with STDP still enabled, the state of most of the

neurons remains stable without lateral inhibition. A few of

them adapt and switch to another pattern, which is perfectly

fine since STDP is still in action. And more importantly, no

“greedy” neuron appears.

The neuronal parameters for this simulation are summa-

rized in table I. In general, the parameters for the synaptic

weights are not critical for the proposed scheme (see table

II). Only two important conditions should be ensured:

1) In all our simulations, ∆w+ needed to be higher than

∆w
−

. In the earlier stage of the learning, the net effect

of LTD is initially a lot stronger than LTP. Neurons are

not selective and therefore all their synaptic weights

are depressed on average. However, because the initial

weights are randomly distributed and thanks to lat-

� �� � �� 
	

Fig. 4. After 2,000 presentations in random order, the 8 AER stimuli are
again presented, one every 200 ms. Now, each neuron only responds to one
particular part of one trajectory.
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Fig. 5. Weight reconstructions after the learning. The reconstructions are
ordered from the earliest neuron activated to the last one for each trajectory,
according to the activity recording of figure 4. Red represents potentiated
synapses linked to the positive (ON) output of the pixel and blue represents
potentiated synapses linked to the negative (OFF) output of the pixel. When
both ON and OFF synapses are potentiated for a given pixel, the resulting
color is light-gray.

TABLE I
DESCRIPTION AND VALUE OF THE NEURONS PARAMETERS FOR PARTIAL

TRAJECTORY EXTRACTION.

Parameter Value Effect

Ithres 40000 The threshold directly affect the selectivity
of the neurons. The maximum value of the
threshold is limited by TLTP and τleak .

TLTP 2 ms The size of the temporal cluster to learn with
a single neuron.

Trefrac 10 ms Should be higher than Tinhibit, but lower
than the typical time the pattern this neuron
learned repeats.

Tinhibit 1.5 ms Minimum time interval between the chunks
a trajectory can be decomposed into.

τleak 5 ms The leak time constant should be a little
higher than to the typical duration of the
features to be learned.

eral inhibition, at a certain point neurons necessarily

become more sensitive to some patterns than others.

At this stage, the LTP issued by the preferred pattern

must overcome the LTD of the others, which is not

necessarily guaranteed if ∆w+ is too low. Note that

if ∆w+ is too high, the initial predicate does not hold

and the neurons cannot be depressed enough to become

selective.

2) One should have ∆w < (wmax − wmin), but high

precision is not required. 4 to 5 bits per weight is

enough, as ∆w+ = 2.∆w
−

= (wmax − wmin)/10
in our simulations.

It is remarkable that on average, there are 1.4 more neurons

TABLE II
MEAN AND STANDARD DEVIATION FOR THE SYNAPTIC PARAMETERS,

FOR ALL THE SIMULATIONS IN THIS PAPER. THE PARAMETERS ARE

RANDOMLY CHOSEN FOR EACH SYNAPSE AT THE BEGINNING OF THE

SIMULATIONS, USING THE NORMAL DISTRIBUTION.

Parameter Mean Std. Dev. Description

wmin 1 0.2 Minimum weight (normalized).

wmax 1000 200 Maximum weight.

winit 800 160 Initial weight.

α+ 100 20 Weight increment.

α− 50 10 Weight decrement.

β+ 0 0 Increment damping factor.

β− 0 0 Decrement damping factor.

activated for diagonal trajectories than for horizontal and

vertical ones. This number is consistent with the distance

ratio between these two types of trajectory, which is equal to√
2.

B. Advanced Features Learning

In this section, we show how the learning scheme intro-

duced above can be used to extract more complex, temporally

overlapping features, directly from an AER silicon retina.

The stimulus used in this section was recorded from the

TMPDIFF128 DVS sensor by the group of T. Delbruck and

is freely available on this website [16]. It represents cars

passing under a bridge over the 210 freeway in Pasadena.

The sequence is 78.5 s in duration, containing a total of 5.2M

events, with an average event rate of 66.1k events per second.

Figure 6 shows some rendering of the sequence obtained with

the jAER software [18] that accumulates the events during a

short period of time in order to draw an image. Counting the

number of cars passing on each traffic lane by watching this

sequence with the naked eye is actually almost an impossible

task, because there are no landmarks to distinguish the lanes

other than the moving cars and the traffic is quite dense.

The neural network used for this simulation is described

figure 7. It is a two-layer feedforward fully connected net-

work, with 60 neurons in the first layer and 10 neurons in

the second one. The total number of synapses in this system

is 2 ∗ 128 ∗ 128 ∗ 60 + 60 ∗ 10 = 1, 966, 680, which could

however be greatly reduced in practical applications where

a fully connected network is generally not necessary. This

would be the case of our example, because the size of the

features that can be learned (the cars) is small compared

Fig. 6. Illustration of the dataset used for advanced features learning:
cars passing under bridge over the 210 freeway in Pasadena. White pixels
represents ON events and black pixels OFF events. This AER sequence and
other ones are available online [16].



128

128

AER Sensor

16,384 spiking pixels

1st layer
60 neurons

2nd layer
10 neurons

Lateral

inhibition

Lateral

inhibition

…
…

……

Fig. 7. Neural network topological overview for advanced features
learning, directly from data recorded with the AER sensor. It is a two-layer
feedforward fully connected network, with complete lateral inhibition, from
each neuron to every other neuron. There is no spatially specific inhibition
between neurons. The bottom layer is the AER sensor and is not considered
as a layer of the neural network.

to the size of the retina and their spatial locations are also

well defined. Nevertheless, we wanted to show the power of

our approach by not spatially constraining the inputs of the

neurons.

Two learning strategies are successively tested in the

following, both completely unsupervised. The first one could

be called a “global” learning, where the two layers learn

concurrently, the lateral inhibition being always enabled. In

the second strategy, only the first layer is active in a first

step. Once the learned features are stable, lateral inhibition

is removed and STDP can be disabled for this layer. Only

after this step is the second layer allowed to learn and lateral

inhibition is also removed afterwards. In this strategy, there

is no more lateral inhibition involved in the network once

every neuron has specialized itself and we will show the

advantages of this method to achieve exhaustive extraction

of temporally overlapping features. Finally, a methodology

to find the optimal neuronal parameters through genetic

evolution algorithm is detailed.

1) Global Learning: In this first learning strategy, the

two neuronal layers learn at the same time and the lateral

inhibition is always enabled. If one considers only the first

layer, this experiment is exactly the same as the previous one

with the ball trajectories. It is remarkable that although the

cars trajectories constantly overlap in time, the traffic being

quite dense, the mechanism described earlier still successfully

extracts trajectories associated with a single traffic lane, as

demonstrated with the weight reconstruction of the neurons

of the first layer shown in figure 8. Because there is no

particular correlation between the cars in different lanes, two

groups of synapses spatially belonging to different traffic

lanes cannot in average be potentiated together. Thanks to

initial conditions and lateral inhibition, the neuron necessarily

become more sensitive to one of the two groups, thus

allowing LTP to potentiate one group more, regardless of

the other synapses activated at the same time, which will

on average undergo LTD because they are not correlated

1st lane 2nd lane 3rd lane 4th lane 5th lane 6th lane

Fig. 8. Weight reconstructions of the first neuronal layer after the learning
of the cars sequence. There are 60 neurons and each of them is sensitive
to a specific part of the trajectory for only one traffic lane. Red represents
potentiated synapses linked to the positive (ON) output of the pixel and blue
represents potentiated synapses linked to the negative (OFF) output of the
pixel. When both ON and OFF synapses are potentiated for a given pixel,
the resulting color is light-gray.

temporally. If the threshold is sufficiently high to allow a

good selectivity of the neuron, cars activating this group of

synapses will eventually be sufficient to make it fire most of

the time. This only works if LTD is systematically applied

to synapses not undergoing an LTP, even those not receiving

a pre-synaptic spike. Therefore, classical STDP mechanisms
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Fig. 9. Detection of the cars on each traffic lane after the learning, with
the global strategy. The reference activity, obtained by hand labeling, is
compared to the activity of the best neuron of the second layer for the
corresponding traffic lane (numbered from 1 to 6). The reference activity is
at the bottom of each subplot (in blue) and the networks output activity is
at the top (in red).

modeled by the equation ∆w = f(tpost − tpre) fail at this

task, because it is not possible with this simple rule to depress

synapses whose activation time is precisely not correlated

with the post-synaptic spike.

Using the same mechanism, a second neuron layer fully

connected to the first one is able to perform advanced features

learning from the partial trajectories extracted with the first

layer. With appropriate parameters (see table III), this second

layer can identify entire traffic lanes by recombining partial

trajectories. The output activity of this layer can be used to

partially count the number of cars passing on each traffic

lane, as shown by the activity raster plot in figure 9. The

detection rate ranges from 47% for the first lane to 100% for

the fifth lane.

The activity raster plot and weight reconstructions are

computed after the input AER sequence of 78.5 s has been

presented 8 times. This corresponds to a real-time learning

duration of approximatively 10 minutes, after which the

evolution of the synaptic weights stay very weak. It is

TABLE III
NEURONS PARAMETERS FOR ADVANCED FEATURES LEARNING. A

DIFFERENT SET OF PARAMETERS IS USED DEPENDING ON THE LEARNING

STRATEGY (GLOBAL OR LAYER-BY-LAYER).

Parameter Global Learning Layer-by-layer Learning

1st Layer 2nd Layer 1st Layer 2nd Layer

Ithres 500000 1500 1060000 2240

TLTP 12 ms 300 ms 14.7 ms 46.5 ms

Trefrac 300 ms 250 ms 517 ms 470 ms

Tinhibit 50 ms 100 ms 10.2 ms 182 ms

τleak 450 ms 300 ms 187 ms 477 ms

Recog. rate 47% to 100% / lane 98% overall
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Fig. 10. Detection of the cars on each traffic lane after the learning, with the
optimized, layer-by-layer strategy. The reference activity, obtained by hand
labeling (shown in blue), is compared to the activity of the best neuron of
the second layer for the corresponding traffic lane (numbered from 1 to 6)
- shown in red.

notable that even after only one presentation of the sequence,

the beginning of the specialization of most of the neurons

is already apparent from the weight reconstructions and a

majority of the visible extracted features at this stage remains

stable until the end of the learning.

2) Layer-by-layer Learning: As we showed with the

learning of partial ball trajectories, lateral inhibition is no

longer necessary when the neurons are specialized. In fact,

lateral inhibition is not even desired, as it could prevent

legitimate neurons from firing in response to temporally

overlapping features. This does not prevent the learning in

any case provided the learning sequence is long enough to

consider that the features to learn are temporally uncorrelated.

This mechanism, which is fundamental to allow competitive

learning, therefore leads to poor performances in terms of

pattern detection once the learning become stable. In conclu-

sion, the more selective a neuron is, the less it needs to be

inhibited by its neighbors.

The figure 10 shows the activity of the output neurons of

the network when lateral inhibition and STDP are disabled

after the learning, on the first layer first, then on the second

layer. The weight reconstructions for the second layer are

also shown in figure 11. For each neuron of the second

layer, the weight reconstruction is obtained by computing the

weighted sum of the reconstructions of the first layer, with

the corresponding synaptic weights for each neuron of the

second layer. The real-time learning duration is 10 minutes

per layer, that is 20 minutes in total. Now that neurons cannot

be inhibited when responding to their preferred stimuli, near

exhaustive features detection is achieved. The network really

learns to detect cars passing on each traffic lane in a com-

pletely unsupervised way, with only 10 tunable parameters

for the neurons in all and without having ever programmed

the neural network to do so. We are able to count the cars
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Fig. 11. Weight reconstructions for the second layer after the learning with
the layer-by-layer strategy (obtained by computing the weighted sum of the
reconstructions of the first layer, with the corresponding synaptic weights for
each neuron of the second layer). The neurons of the second layer associate
multiple neurons of the first layer responding to very close successive
trajectory parts to achieve robust detection in a totally unsupervised way.

passing on each lane at the output of the network with a

fairly good accuracy simply because this is the consequence

of extracting temporally correlated features. Over the 207

cars passing on the six lane during the 78.5 s sequence,

only 4 cars are missed, with a total of 9 false positives,

corresponding essentially to trucks activating neurons twice

or cars driving in the middle of two lanes, which were not

specifically labeled. This gives an impressive detection rate

of 98% even though no fine tuning of parameters is required.

If lateral inhibition is removed after the learning, but STDP

is still active, we observed that the main features extracted

from the first layer remain stable, as it was the case for the

ball trajectories learning.

3) Genetic Evolution: Finding optimal values for the

neuron’s parameters Ithres, TLTP , Trefrac, Tinhibit and τleak
can be a challenging task. However, since all the neurons in

a same layer share the same parameters, this makes only

10 different parameters in total in this neural network that

must be fitted to a particular type of stimuli. This task can

be accomplished efficiently by using a genetic algorithm,

provided that a target network activity can be properly

formulated. Multiple instances of the neural network with

randomly mutated parameters are allowed to learn in parallel

and a score for each instance is computed at the end of the

learning. The parameters of the instances with the best scores

are mutated again for the next run. The score is calculated by

comparing the activity of the second layer and the reference

activity obtained by hand labeling. The activity spike trains

are convolved with the Gaussian function exp
(

−(t/τ)2
)

to

form a continuous signal. The absolute value of the difference

of the resulting signals, for the output activity of the network

and the reference activity, is then integrated and normalized.

Decent parameters can be found in less than 10 generations,

with 80 runs and 8 winners per generation.

C. Robustness and Noise Immunity

In this section, we show that our learning scheme is re-

markably tolerant to synaptic variability, even when neurons

variability is added as well. Exact, matched numbers for the

TABLE IV
DETECTION RATE STATISTICS OVER 100 SIMULATIONS, WITH A

DISPERSION OF 20% FOR ALL THE SYNAPSES PARAMETERS. THE

DISPERSION IS DEFINED AS STANDARD VARIATION OF THE MEAN VALUE.

Lanes learned Missed cars† False positives† Total (%)

≤ 10 ≤ 10 79

First five > 10 and ≤ 20 ≤ 10 10

> 20 ≤ 10 2

Only four ≤ 10 ≤ 10 9

†On learned lanes 100

neurons parameters are therefore not required. This shows

that the network is robust and does not require fine tuning

of its parameters to work properly. We also show extremely

strong tolerance to noise and jitter, in levels far superior to

the already noisy data recorded from the AER sensor.

1) Synaptic variability: We performed a basic analysis of

the robustness to synaptic variability for our specific learning

example. The table IV summarizes the results in terms of

missed cars and false positives for a batch of 100 simulations,

where a dispersion of 20% is applied to all the synapse’s

parameters: wmin, wmax, winit, α+ and α
−

(β+ = β
−

=
0). This is a considerable amount of variability: 20% of the

synapses have a maximum weight that is 25% higher or lower

than the average value. Over the 100 simulations, 9 failed

to learn more than 4 traffic lanes, but even when two traffic

lanes are not learned, the detection rate for the others remains

better than 95%. The sixth traffic lane is never learned. This

is actually understandable, because cars passing on the sixth

traffic lane (at the very right of the retina) activated less pixels

over their trajectory than those on other lanes, with a total

amount of cars that is also lower. Consequently, because the

overall spiking activity for lane 6 is at least 50% lower than

the others, it is likely that depending on the initial conditions

or some critical value for some parameters, no neuron is

able to sufficiently potentiate the corresponding synapses to

gain exclusive selectivity. Indeed, figure 8 shows a specific

example where all the lanes are learned and only 3 neurons

out of 60 manage to become sensitive to the last lane.

2) Neuronal variability: A new batch of 100 simulations

was performed, this time with an added dispersion of 10%

TABLE V
DETECTION RATE STATISTICS OVER 100 SIMULATIONS WITH A

DISPERSION OF 10% FOR ALL THE NEURONS PARAMETERS, IN ADDITION

TO THE DISPERSION OF 20% FOR ALL THE SYNAPSES PARAMETERS.

Lanes learned Missed cars† False positives† Total (%)

All six ≤ 20 ≤ 10 1

≤ 10 ≤ 10 51

First five > 10 and ≤ 20 ≤ 10 21

> 20 ≤ 10 5

Five (others) ≤ 10 ≤ 10 3

≤ 10 ≤ 10 16

Only four > 10 and ≤ 20 ≤ 10 1

> 20 ≤ 10 2

†On learned lanes 100



applied to all the neuronal parameters from table III, for the

two layers. Results in table V are still good for 75% of the

runs and very good for about 50% of them, if one ignores

the sixth lane, which is very hard to learn in a completely

unsupervised way. In the worst cases, only four lanes are

learned. It is noteworthy that the lanes 4 and 5 are always

correctly learned, with constantly more than 90% of detected

cars in all the simulations. The reason is that these lanes are

well identifiable (contrary to lanes 1 and 6) and experience

the highest traffic (the double compared to lanes 2 and 3).

It is likely that with a longer AER sequence, better results

could be achievable, without even considering the possibility

of increasing the resolution of the sensor.

3) Noise and Jitter: The robustness to noise and jitter of

the proposed learning scheme was also investigated. Simu-

lation with added white noise (such that 50% of the total

amount of the spikes in the sequence are random) and 5 ms

added random jitter shown almost no impact on the learning

at all. Although only the first five traffic lanes are learned,

essentially for the reasons exposed above, there were less

than 5 missed cars and 10 false positives with the parameters

from table III.

IV. DISCUSSION AND CONCLUSION

This paper introduced the first practical unsupervised

learning scheme capable of exhaustive extraction of tem-

porally overlapping features directly from unfiltered AER

silicon retina data, using only a simple, fully local STDP

rule and 10 parameters in all for the neurons. We showed

how this type of spiking neural network can learn after only

10 minutes of real-life data to detect cars with an accuracy

greater than 95%, with a limited retina size of only 128x128

pixels.

The next logical step to improve our learning scheme

would be to implement a more progressive deactivation of

the lateral inhibition, which would take place during the

learning. Neurons should be able to reduce the strength of

the lateral inhibition proportionally to their selectivity. The

only difficulty is to reliably quantize the selectivity of the

neurons during the learning, without too much overhead.

Such a neural network could very well be used as a

pre-processing layer for an intelligent motion sensor, where

the extracted features could be automatically labeled and

higher-level object tracking could be performed for example.

The STDP learning rule being very loosely constrained and

fully local, no complex global control circuit would be

required. This also paves the way to very efficient hardware

implementations that could use large crossbars of memristive

nano-devices.
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