
HAL Id: hal-01670119
https://inria.hal.science/hal-01670119

Submitted on 21 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Formal Verification of Contiki: Analysis of the
AES–CCM* Modules with Frama-C

Alexandre Peyrard, Nikolai Kosmatov, Simon Duquennoy, Shahid Raza

To cite this version:
Alexandre Peyrard, Nikolai Kosmatov, Simon Duquennoy, Shahid Raza. Towards Formal Verification
of Contiki: Analysis of the AES–CCM* Modules with Frama-C. RED-IOT 2018 - Workshop on
Recent advances in secure management of data and resources in the IoT, Feb 2018, Madrid, Spain.
�hal-01670119�

https://inria.hal.science/hal-01670119
https://hal.archives-ouvertes.fr


Towards Formal Verification of Contiki:
Analysis of the AES–CCM* Modules with Frama-C

Alexandre Peyrard
IMT Lille Douai, France

alexandre.peyrard.pro
@gmail.com

Nikolai Kosmatov
CEA, List, France

nikolai.kosmatov@cea.fr

Simon Duquennoy
RISE SICS, Sweden and

Inria Lille - Nord Europe, France

simon.duquennoy@ri.se

Shahid Raza
RISE SICS, Sweden

shahid.raza@ri.se

Abstract
The number of Internet of Things (IoT) applications is

rapidly increasing and allows embedded devices today to
be massively connected to the Internet. This raises soft-
ware security questions. This paper demonstrates the us-
age of formal verification to increase the security of Con-
tiki, a popular open-source operating system for the IoT. We
present a case study on deductive verification of encryption-
decryption modules of Contiki (namely, AES–CCM*) using
Frama-C, a software analysis platform for C code.

Keywords
Formal Verification, AES, Frama-C, Security. Contiki

1 Introduction
Recent advances in embedded wireless communication

have enabled the Internet of Things (IoT), where devices
connect the physical world to the Internet. IoT is rapidly
expanding into critical domains such as healthcare, energy
and avionics. With the proliferation of IoT deployments, our
daily life will become increasingly dependent on IoT sys-
tems. Therefore, security and safety concerns must be taken
seriously. Though a number of efforts are being carried out
to secure IoT networks [15][16][17], protection of commu-
nication links is not enough. The security of the underlying
software, i.e., mechanisms to ensure correctness and absence
of runtime errors, is also critical.

Cyber-attacks such as Mirai botnets or Zigbee war-flying
have already intruded IoT systems by exploiting software
security breaches. Such attacks have potentially disastrous
consequences, e.g., leakage of private data, or life-critical
actuation.

In this paper, we present an ongoing case study apply-
ing formal verification to ensure software security of Con-
tiki, an open-source OS for the IoT targeted primarily for
recourse-constrained battery-powered devices [11]. The tar-
get modules of this study are the AES and CCM* encryption
modules of Contiki, which we analyze using Frama-C [12],
a software analysis platform for C code.

The paper is organized as follows. First, we present Con-
tiki and the module under verification, as well as the basics of
Frama-C that we used to prove the code of this module (Sec-
tion 2). Then we describe our verification approach (Section
3) and discuss the results and lessons learned (Section 4).
Next, we give some related work (Section 5). Finally, we
present the concluding remarks and future work (Section 6).

2 Background
This section presents the necessary preliminary knowl-

edge on Contiki and the target modules verified in this study,
as well as the Frama-C platform and its specification lan-
guage ACSL.

2.1 Contiki
Contiki [11] is an open-source operating systems for IoT

devices. It was one of the first operating systems to pro-
vide full low-power IPv6 connectivity, including recent IETF
stadnards such as 6TiSCH, 6LoWPAN, RPL or CoAP. The
target devices for Contiki have an MCU ranging from 8 to
32-bit, with no MMU. These devices usually have a small
low-power radio modules, some sensors, a few kilobytes
RAM and tens of kilobytes ROM. Contiki is implemented
in C language and has a kernel linked to platform-specific
drivers at compile-time.

When Contiki was developed in 2002 by Adam Dunkels,
no particular attention was paid to its security. The first secu-
rity modules appeared for communication security via stan-
dard protocols such as IPSec or DTLS. However, little (if
any) attention was given to software security aspects so far.

2.2 AES and CCM* Modules
Contiki implements the Advanced Encryption Standard

(AES) [9], a symmetric encryption algorithm that replaced in
2002 the earlier Data Encryption Standard (DES) [6], which
became obsolete in 2005. AES was designed to be efficient



in both hardware and software implementations, and sup-
ports a block length of 128 bits and key lengths of 128, 192
and 256 bits. In Contiki, only 128-bit keys are supported. In
order to secure arbitrarily long data chunks, the AES-CCM
block cipher mode of operation is also implemented in Con-
tiki.

In term of security, data encryption and authentication is
a very important ingredient of wireless communication in a
network. CCM* is used for instance by the DTLS proto-
col to provide end-to-end confidentiality and integrity. How-
ever, it is also crucial for the source code implementing these
modules to be dependable. Previous studies have shown that
runtime errors (including invalid pointer accesses, out-of-
bounds array accesses, integer overflows, etc.) are a major
reason of many security vulnerabilities [18]. That is why we
choose to analyze the AES and CCM* modules of Contiki
for absence of potential runtime errors. Note that we assume
the underlying algorithms to be dependable, as they follow
the well-known standards and were carefully tested.

An additional reason for this choice of modules is their
small size and their independence from other Contiki mod-
ules. Source code analysis by deductive verification is a
time-consuming process, so focusing on a small yet criti-
cal part of a large software project is a practical way to ob-
tain representative results. The two chosen modules are both
tightly coupled, and consist in only a few hundreds lines of
codes in four files: aes-128.c, aes-128.h, ccm-star.c
and ccm-star.h. Further, note that as these modules expose
a clear API, they are fairly independent from the rest of Con-
tiki, and could be used in other projects.

Figure 1 shows code snippet from the AES module. It
illustrates an intensive usage of pointer and array accesses
and integer arithmetics representing a risk of runtime errors
(such as an out-of-bounds access) that can potentially lead to
a security breach.

2.3 Frama-C: A Software Analysis Platform
Frama-C [12] is a rich toolset for static and dynamic anal-

ysis of C code developed by the List institute of the French
Alternative Energies and Atomic Energy Commission in col-
laboration with the French Institute for Research in Com-
puter Science and Automation (INRIA). Frama-C offers var-
ious analyzers developed as individual plug-ins and based on
different techniques such as abstract interpretation, weakest
precondition calculus, test generation, runtime verification,
dependency and impact analysis, program slicing, etc. For
instance, the Eva plug-in performs abstract-interpretation-
based value analysis of C code. It can be used to compute
potential values of program variables at each program point
and to detect potential errors in the program.

Frama-C also provides a specification language called
ACSL (ANSI/ISO C Specification Language) [5] to write
annotations (or contracts) that constitute a program spec-
ification. ACSL annotations are written in special com-
ments /*@ <annotation>*/ or //@ <annotation> in the
C source code. Thanks to this way of inserting annotations,
the annotated code remains compilable and equivalent to the
original code: the annotations are simply ignored during
compilation.

1 static void
2 set_key(const uint8_t *key)
3 {
4 uint8_t i;
5 uint8_t j;
6 uint8_t rcon;
7

8 rcon = 0x01;
9 memcpy(round_keys[0], key, AES_128_KEY_LENGTH);

10 for(i = 1; i <= 10; i++) {
11 round_keys[i][0] = sbox[round_keys[i - 1][13]]
12 ˆ round_keys[i - 1][0] ˆ rcon;
13 round_keys[i][1] = sbox[round_keys[i - 1][14]]
14 ˆ round_keys[i - 1][1];
15 round_keys[i][2] = sbox[round_keys[i - 1][15]]
16 ˆ round_keys[i - 1][2];
17 round_keys[i][3] = sbox[round_keys[i - 1][12]]
18 ˆ round_keys[i - 1][3];
19 for(j = 4; j < AES_128_BLOCK_SIZE; j++) {
20 round_keys[i][j] = round_keys[i - 1][j]
21 ˆ round_keys[i][j - 4];
22 }
23 rcon = galois_mul2(rcon);
24 }
25 }

Figure 1. Implementation of AES key storage in Contiki
(function set_key, file aes-128.c)

In this paper, we use WP, the Weakest-Precondition-based
plug-in of Frama-C for deductive verification of C programs.
WP can be used to establish a formal, mathematical proof
that a given C program respects its specification. Given a
C program with an ACSL specification, WP translates the
required properties into theorems to be proved, called verifi-
cation conditions or goals. When verification conditions are
rather simple, the WP plug-in can be capable alone to prove
them. However, it often happens that WP cannot validate all
necessary properties. In this case, it calls external provers
like SMT solvers to prove them. In our analysis of the AES–
CCM* modules, we use three SMT solvers: Alt-Ergo [8],
CVC4 [3] and Z3 [10].

2.4 Example of ACSL Specification
The ACSL language is a behavioral specification lan-

guage used in Frama-C to define the expected (i.e. correct)
behavior of a given C program. Any C function can be pro-
vided a function contract specifying its preconditions (i.e.
conditions supposed to be true on entry) and postconditions
(properties on the memory state and return value that the
function should ensure on exit). These properties can deal
with the values of program variables, validity of memory ad-
dresses and arrays. More complex user-defined predicates
can be used as well. We say that the function respects its
specification if for any possible function call such that the
program state respects the precondition before the call, the
program state satisfies the postcondition after the execution
of the function.

Figure 2 shows a function that computes the absolute
value of an argument. It illustrates how the function contract
written in ACSL is divided into a requires clause (line
3) and two ensures clauses (lines 4–6). The requires



1 #include <limits.h>
2 /*@
3 requires INT_MIN < val;
4 ensures \result >= 0;
5 ensures (val >= 0 ==> \result == val) &&
6 (val < 0 ==> \result == -val);
7 */
8 int abs(int val){
9 if(val < 0) return -val;

10 return val;
11 }

Figure 2. An absolute value function in C with ACSL
annotations

1 const struct aes_128_driver aes_128_driver = {
2 set_key ,
3 encrypt;
4 }

Figure 3. The aes driver 128 structure

clause expresses the precodition – in this example, the fact
that the value of parameter val must be greater than the pre-
defined constant INT_MAX1. The ensures clauses specify
two postconditions.

3 Verification Approach
Computer programs often contain unintentional errors (or

bugs) due to the fact that they are written by humans. Such
bugs can be difficult to find. The purpose of software veri-
fication and validation is to provide confidence that the pro-
gram does not have bugs – either by detecting and fixing
them, or by proving their absence.

One traditional technique of software validation is testing:
a program is executed on selected test inputs, and its results
are checked with respect to the expected behavior. Depend-
ing on the required level of confidence, tests can become
very complex, activating various parts of the source code.
However, since the program cannot be in general tested for
all possible input states, testing cannot prove the absence of
bugs.

Another approach is to ensure that the program is correct
using formal verification. Deductive verification can be used
to prove that the program respects a given specification. De-
pending on the level of detail of the provided specification,
one can prove functional correctness or just the absence of
runtime errors. In this work, we follow the latter approach
and apply the WP plug-in of Frama-C to prove the absence
of runtime errors in the AES–CCM* modules of Contiki.
3.1 Verification of the AES–CCM* Modules

As mentioned in Section 2.2, the AES module is com-
posed of one main C file aes-128.c and its header
aes-128.h. It is in the C file that we have written an ACSL
specification. To use Contiki’s AES function, one must
use a variable of type const struct aes_driver_128,
shown in Figure 3, which defines the two AES functions to
be used as set key and encrypt.

1to avoid an arithmetic overflow at line 9 since -INT_MAX cannot be
represented in the int type

The set_key function shown in Figure 1 implements an
algorithm to register a given AES key, whereas the encrypt
function encodes a given message. We have written a func-
tion contract as explained previously for each of these func-
tions.

This work is aimed at verifying the absence of runtime
errors such as out-of-bounds memory accesses in the target
modules. To achieve this goal we specify properties related
to the variables used in the function of the file aes-128.c
that can potentially be responsible for such errors. As men-
tioned above, we do not verify functional correctness of the
AES algorithm in the encrypt function with Frama-C/WP.

Similarly, for the CCM* module, we also focus on run-
time errors, so we do not specify the CCM* algorithm in
ACSL but write properties on the variables used in this al-
gorithm in order to ensure the absence of errors. As the
CCM* algorithm builds on AES, we find a similar structure,
const struct ccm_star_driver, composed again of
two functions. This structure includes a key recording func-
tion named set key and an encryption function called aead.

We have verified both the AES and CCM* C files with
Frama-C/WP to prove the absence of runtime errors thanks
to the provided ACSL specifications. We have also created a
test file representing the regular use of the AES and CCM*
modules by the Contiki users. As we study only a part of
Contiki, verifying a module in a realistic context demon-
strates the possibility to extend the verification to other mod-
ules in the future. This approach is detailed in Section 3.2.

3.2 Consistency of the Specification
Ensuring that all covered functions respect their contracts

is not enough. One must also verify that the calling functions
satisfy the preconditions. As AES is basically only used by
CCM*, we were able to verify all preconditions for function
calls to the AES module. CCM*, however, can be called
from many different places, including user code. As long as
the whole code of Contiki is not verified, there is still a risk
that some of these functions can be called with illegal pa-
rameters (i.e., that do not comply with the preconditions). In
this case, the function can have a different behavior (since its
input state does not verify the precondition) that can poten-
tially lead to a runtime error.

Since a complete formal verification of Contiki is not yet
performed, we propose a way to get confidence that our spec-
ification is consistent with the calling code. More specifi-
cally, we simulate regular usage of the target module by Con-
tiki users in several test cases and verify the consistency of
the preconditions we provided for these typical use cases. In
order to do that, we have created a test file which represents
the most likely usage of AES–CCM* functions.

This test file, called wp_tests.c, contains three tests in-
spired from existing Contiki application code examples. The
first test test_aes_128 is a simple use of the two main
functions of the AES module, set_key and encrypt. The
two other tests are more complex because we need to sim-
ulate a frame that will be encrypted with the CCM* en-
cryption. That is why we need to put annotations in the
packetbuf.c file that we used in these tests.



C Files studied ACSL lines ACSL and C lines

aes-128.c 47 (23%) 208
ccm-star.c 56 (29%) 192

Table 1. ACSL line count from the AES-CCM* modules

Frama-C/WP provers Number of goals proved

Simplifier Engine (Qed) 166
Alt-Ergo 93
CVC4 13
Z3 3

All provers 275
Table 2. Results of analysis for the file aes-128.c, where each next prover is applied to yet unproven goals

We also run Frama-C/WP on this test file to ensure that the
provided preconditions are indeed consistent with the typical
call contexts. It gives confidence that the perimeter of ver-
ification will be extended to a larger set of modules using
AES–CCM* in the future.

4 Results
To prove the specifications of the AES–CCM* modules,

we have used the Magnesium-20151002 version of Frama-
C/WP with the SMT solvers Alt-Ergo 0.99.1, CVC4 1.4 and
Z3 4.4.1. The ACSL specification of the aes-128.c file con-
tains 47 lines of code, for a total of 208 lines of annotated
code without top comments (so the specification takes 23%
of the annotated code). Regarding the ccm-star.c file, there
are 56 lines of ACSL specification for 192 lines of annotated
C source code without top comments (29%).

After writing the ACSL specification, we start the anal-
ysis of the modules by Frama-C/WP. We run the analysis
once for each C file, aes-128.c, ccm-star.c and a test file,
wp tests.c. The command line used for the first analysis
for the file aes-128.c is as follows:

$ frama -c-gui -wp -wp-rte -wp-model "Typed+Cast"
-wp-prover alt -ergo ,cvc4 ,z3
-cpp -extra -args=’-I./core -I./platform/native/
-I./cpu/native/’ core/lib/aes -128.c

Notice that we use the -wp-rte option in order to verify
the absence of possible run-time errors in all instructions of
the corresponding file. Moreover, we use two memory mod-
els provided by WP, called Cast and Typed, for our analysis.
A memory model defines the way the tool represents vari-
ables and memory locations during the verification process.
The Typed model is the default memory model for WP that
stores variables of different types in different arrays. The
Cast model supports casts between pointers.

The results of the analysis of the AES module show that
for a total of 275 goals generated, all goals are proved by
the Frama-C/WP provers for a total processing time of 27.98
seconds. These goals were proven by Qed, the simplifier en-
gine of WP, and three SMT provers. Qed proved 166 goals.
Alt-Ergo, CVC4 and Z3 proved, respectively, 93, 13 and 3
goals. The provers are used successively in this order to val-
idate the remaining goals, that is, a next prover was applied

to yet unproven goals. Table 2 sums up the results of Frama-
C/WP for this file. A timeout per goal was set to 10 seconds.

The results of the CCM* module show that out of 467
goals generated by WP, all are successfully proved meaning
that the AES-CCM* modules are validated. As in the pre-
vious analysis, the provers are used one after another. First,
Qed proved 280 goals, then Alt-Ergo, CVC4 and Z3 proved,
respectively, 119, 64 and 4 goals. The results are presented
in Table 3. The total processing time of this analysis is 48.97
seconds.

The last analysis is performed on the test file
wp_tests.c. As it includes all files containing ACSL speci-
fications, its analysis includes analysis of the previous ones.
The annotation of the C code for the file wp_tests.c
requires to annotate some other Contiki C files such as
packetbuf.c belonging to other modules of Contiki. That
is why the analysis of this test file is still in progress. It is
expected to show that the chosen specifications of the AES–
CCM* modules are compatible with their typical use cases.

Thanks to formal verification using the WP plug-in of
Frama-C, we can guarantee that there are no out-of-bounds
memory accesses in Contiki’s AES and CCM* modules, as
long as they are used on admissible inputs with respect to
their contracts. This last property will be demonstrated by
the verification of the test file that is still ongoing, and con-
firmed during the verification of other modules. It will give
us strong guarantees of absence of out-of-bounds memory
accesses in the AES-CCM* modules.

5 Related work
Formal verification of OS and Cloud hypervisors has al-

ready been successfully applied in several projects. For ex-
ample, Klein et al. [13] describe formal verification for seL4,
a microkernel allowing devices running it to achieve the
highest level of the Common Criteria. Formal verification
of a microkernel is described in [2]. In these projects, verifi-
cation relies on interactive, machine-assisted and machine-
checked proof with the theorem prover Isabelle/HOL. [4]
presents a verification of a model of virtualization. Both im-
plementation and verification are done in the Coq proof as-
sitant. Verification of the translation lookaside buffer (TLB)
virtualization, a core component of modern hypervisors, is
presented by Alkassar et al. [1]. Frama-C/WP has also been



Frama-C/WP provers Number of goals proved

Simplifier Engine (Qed) 280
Alt-Ergo 119
cvc4 64
z3 4

All provers 467
Table 3. Results of analysis for the file ccm-star.c, where each next prover is applied to yet unproven goals

applied in a previous work [7] to formally verify the vir-
tual memory system of a hypervisor. The proof is performed
mostly automatically, only a few lemmas have been proved
interactively in Coq.

In the context of IoT software, formal verification was
rarely applied since this application domain was not consid-
ered as critical for a long time. Recently, a complete for-
mal verification using Frama-C/WP of the memory alloca-
tion module of Contiki, memb, was presented in [14].

The present work continues the previous efforts and
presents a case study on formal verification of a critical mod-
ule of Contiki in Frama-C/WP.

6 Conclusion and Future Work
In this paper, we have presented a recent verification ef-

fort of proving in Frama-C/WP the absence of runtime er-
rors in the AES and CCM* modules of Contiki, two of its
most critical parts responsible for data encryption. We have
verified the absence of runtime errors, such as invalid mem-
ory accesses. As all properties have been proved by Frama-
C/WP, we have a complete analysis of the AES-CCM* mod-
ules.

Frama-C/WP is a powerful verification tool capable of
formally proving that a given program respects its specifi-
cation. Depending on the level of detail of the specifica-
tion, the verification engineer can prove a complete or partial
functional correctness of the program, and/or the absence of
runtime errors.

However, to use the tool, the engineer has to acquire a suf-
ficient expertise in writing formal specification in the ACSL
language, selecting an appropriate WP memory model and
using a suitable SMT solver. Depending on their initial back-
ground and previous experience, this training phase can take
between a few days and several months. Debugging of the
specification can represent a particular issue since proof fail-
ures can often be difficult to understand.

It is important to continue formal verification of Contiki.
Even though a previous study proved functional properties
of Contiki’s memory allocation module memb [14] and this
work has shown the absence of security-related memory er-
rors in the AES–CCM* modules, formal verification of a
significant part of the source code of Contiki remains to be
done. Future work includes extending the perimeter of ver-
ification to a larger range of modules in Contiki. Another
future work direction is to extend Frama-C in order to auto-
matically generate a subset of relevant annotations, in partic-
ular, for loop invariants.

Acknowledgements
This work was partially supported by the Vessedia

project, funded from European Union’s Horizon 2020 re-
search and innovation programme under grant agreement
No 731453. It was also supported by a grant from CPER
Nord-Pas-de-Calais/FEDER DATA and the distributed envi-
ronment Ecare@Home funded by the Swedish Knowledge
Foundation 2015-2019.

7 References
[1] E. Alkassar, E. Cohen, M. Kovalev, and W. J. Paul. Verification of

TLB virtualization implemented in C. In Proc. of the 4th Interna-
tional Conference on Verified Software: Theories, Tools, Experiments
(VSTTE 2012), volume 7152 of LNCS, pages 209–224. Springer,
2012.

[2] E. Alkassar, W. Paul, A. Starostin, and A. Tsyban. Pervasive verifi-
cation of an OS microkernel. In Proc. of the 3rd International Con-
ference on Verified Software: Theories, Tools, Experiments (VSTTE
2010), volume 6217 of LNCS, pages 71–85. Springer, 2010.

[3] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovic,
T. King, A. Reynolds, and C. Tinelli. CVC4. In Proc. of the 23rd In-
ternational Conference on Computer Aided Verification (CAV 2011),
volume 6806 of LNCS, pages 171–177, 2011.

[4] G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna. For-
mally verified implementation of an idealized model of virtualization.
In Proc. of the 19th International Conference on Types for Proofs and
Programs (TYPES 2013), pages 45–63, 2013.

[5] P. Baudin, P. Cuoq, J.-C. Fillitre, C. March, B. Monate, Y. Moy, and
V. Prevosto. ACSL: ANSI/ISO C Specification Language. http://frama-
c.com/acsl.html.

[6] E. Biham and A. Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer, 1993.

[7] A. Blanchard, N. Kosmatov, M. Lemerre, and F. Loulergue. A case
study on formal verification of the anaxagoros hypervisor paging sys-
tem with frama-c. In Proc. of the 20th International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 2015), vol-
ume 9128 of LNCS, pages 15–30. Springer, June 2015.

[8] S. Conchon et al. The Alt-Ergo Automated Theorem Prover. http://alt-
ergo.lri.fr.

[9] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography.
Springer, 2002.

[10] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc.
of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2008), pages 337–340.
Springer, 2008.

[11] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proc. of the
IEEE Conference on Local Computer Networks (LCN 2014). IEEE,
2004.

[12] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C: A software analysis perspective. Formal
Asp. Comput., 27(3):573–609, 2015.

[13] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Der-
rin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood. seL4: formal verification of an operating-
system kernel. Communications of the ACM, 53(6):107–115, 2010.



[14] F. Mangano, S. Duquennoy, and N. Kosmatov. A memory allocation
module of Contiki formally verified with Frama-C. A case study. In
Proc. of the 11th International Conference on Risks and Security of
Internet and Systems (CRiSIS 2016), volume 10158 of LNCS, pages
114–120. Springer, 2016.

[15] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt. Se-
cure Communication for the Internet of Things - A Comparison of
Link-Layer Security and IPsec for 6LoWPAN. Security and Commu-
nication Networks, Wiley, 7(12):2654–2668, Dec. 2014.

[16] S. Raza, T. Helgason, P. Papadimitratos, and T. Voigt. Secure-
sense: End-to-end secure communication architecture for the cloud-

connected internet of things. Future Generation Computer Systems
(Elsevier), 77:40–51, December 2017.

[17] S. Raza, L. Seitz, D. Sitenkov, and G. Selander. S3K: Scalable Secu-
rity with Symmetric Keys - DTLS Key Establishment for the Internet
of Things. IEEE Transactions on Automation Science and Engineer-
ing, 13(3):1270–1280, July 2016.

[18] V. van der Veen, N. dutt-Sharma, L. Cavallaro, and H. Bos. Memory
errors: The past, the present, and the future. In Proc. of the Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses,
volume 7462 of LNCS, pages 86–106. Springer, 2012.


