N

HAL

open science

VisUML: Live & Interactive Diagrams

Mickaél Duruisseau, Jean-Claude Tarby, Xavier Le Pallec, Sébastien Gérard

» To cite this version:

Mickaél Duruisseau, Jean-Claude Tarby, Xavier Le Pallec, Sébastien Gérard. VisUML: Live & In-
teractive Diagrams. 29éme conférence francophone sur I'Interaction Homme-Machine, AFTHM, Aug

2017, Poitiers, France. 2 p. hal-01577689

HAL Id: hal-01577689
https://hal.science/hal-01577689
Submitted on 27 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01577689
https://hal.archives-ouvertes.fr

VisUML: Live & Interactive Diagrams

Mickaél Duruisseau
CEA LIST
CEA - Boite 94
91191, Gif sur Yvette, France
mickael.duruisseau@cea.fr

Xavier Le Pallec
University of Lille
CRIStAL, UMR 9189
59650, Villeneuve d’Ascq, France
xavier.le-pallec@univ-lille1.fr

ABSTRACT

A classic Integrated Development Environment (IDE) allows dis-
playing information only with a textual representation. This kind
of representation is perfect for the linear aspect of the code, but not
effective to represent links between code fragments. Current graph-
ical code representation modules in IDE are suited to apprehend
the system from a global point of view. However, the cognitive
integration cost of those diagrams is disproportionate related to
the elementary coding task.

Our approach considers graphical representation but only with
code elements that are parts of the developer’s mental model during
his programming task. The corresponding cognitive integration of
our graphical representation is then less costly and the information
that text struggles to display will be clearly explicit. We use UML
for this representation because it is a widespread and well-known
formalism.

We want to show that dynamic diagrams, whose content is mod-
ified and adapted in real-time by monitoring each action of the
programmer in the IDE can be of great benefit as their contents
are perfectly suited to the developer current task. With our live
diagrams, we provide to developers an efficient way to navigate
through textual and graphical representation.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI); Graphical user interfaces; Interaction devices; In-
teraction techniques; HCI theory, concepts and models; Interactive
systems and tools; Interaction design; « Software and its engin-
eering — Model-driven software engineering; Software pro-

totyping;

Permission to make digital or hard copies of part or all of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses,
contact the Owner/Author.

Copyright is held by the owner/author(s).

IHM’17 , August 28—September 1, 2017, Poitiers, France

Jean-Claude Tarby
University of Lille
CRIStAL, UMR 9189
59650, Villeneuve d’Ascq, France
jean-claude.tarby @univ-lille1.fr

Sébastien Gérard
CEA LIST
CEA - Boite 94
91191, Gif sur Yvette, France
sebastien.gerard@cea.fr

KEYWORDS

HCI; MDE; Software Engineering; UML; Papyrus; Human-Centered
Design

RESUME

Les IDE actuels permettent d’afficher des informations sous forme
de texte. Ce genre de représentation est parfait pour 'aspect linéaire
du code, mais est moins efficace pour représenter les liens entre les
différents morceaux du code. Les modules actuellement développés
qui affichent une représentation graphique du code sont congus
pour appréhender le systéme d’un point de vue global. Cependant,
I'intégration cognitive de ces diagrammes est disproportionnée par
rapport a la tache de programmation.

Notre approche utilise des représentations graphiques contenant
uniquement les éléments du code qui font partie du modéle mental
du développeur pendant sa tache de programmation. L’intégration
cognitive résultante a nos représentations est donc moins cotteuse
et les informations mal représentées par le texte sont plus clairement
explicitées. Nous utilisons UML pour ces représentations car c’est
un langage connu et répandu.

Nous voulons montrer que des diagrammes dynamiques, dont le
contenu est modifié et adapté en temps réel a chaque action sur 'TDE
du développeur, peuvent étre utiles. En effet, leurs contenus sont
adaptés a la tache active du développeur. Avec nos live diagrammes,
nous fournissons une facon efficace de naviguer entre le code et les
différentes représentations graphiques.

MOTS-CLEFS

Interaction Homme-Machine; Ingénierie Dirigée par les Modéles;
Génie Logiciel; Méta-Modele; UML; Papyrus; Conception Centrée
sur 'Humain

1 INTRODUCTION

Human-Computer Interaction (HCI) has significantly evolved
in recent years with the appearance of mobile and tactile devices,
voice and gesture recognition, augmented and virtual reality, etc.
Nowadays, most of the smartphone users know how to interact
with a map, using simple interactions like touch, but also some more
complex, like swipe or pinch. In the meantime, software practition-
ers still develop applications only with a keyboard and a mouse.


https://doi.org/10.1145/nnnnnnn.nnnnnnn
A-51

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. Copyright is held by the owner/author(s). IHM ’17 , August 28–September 1, 2017, Poitiers, France


IHM’17, 29 Aot - 1¢” Septembre 2017, Poitiers, France

Furthermore, ‘development tools are showing mainly text with (so
much) obstinacy’ [3] despite some improvements concerning HCI
in their IDE, like syntax coloration and auto-completion.

We may consider software visualization tools as an improvement
of the HCI, but their place in IDE and their use remain anecdotal.
Visualization tools generally help developers to understand the
global architecture of the application they are working on or the
impact of what they are changing. Development consists mainly in
producing code but not dealing with considerations of macroscopic
nature. We argue these visualization tools are not focused on the
most important and elementary task: programming. We claim that
a graphical representation of elements that are currently knitted
by a programmer may be more easily accepted.

The first reason is it can quickly provide information that is
less visually explicit in textual code and still relevant for coding. In
particular, it may highlight the different relations between elements
(structural relations or specific execution flow). The second reason
is that such representations (the graphical ones) are more suited to
mobile and tactile devices (like tablets) than textual code and so, by
taking advantage of them, they can provide HCI improvements of
IDE.

We have chosen the UML language for the graphical representa-
tion because it is a language known and mastered by developers,
even if according to different surveys[1, 2, 6] it is not enough used
in firms. This choice was made according to the principle of cog-
nitive integration[5]: adapt to the knowledge of developers. This
kind of concern is the heart of the cognitive dimensions[4] and
we aim to reduce the cognitive charge of the developers. In our
case, when switching from a textual code editor to a graphical rep-
resentation, it is clearly necessary that programmers keep their
references, therefore the graphical representation has to be close
to their mental model.

2 VISUML PRESENTATION

VisUML is a live diagramming approach that we designed and
that implements this point of view of software visualization. It allow
developers to have a live and interactive view of their code.

Once enabled, VisUML renders a live and interactive Class Dia-
gram, shown in Figure 1, that displays classes opened in the IDE,
as well as related unopened ones. Easy navigation interactions are
implemented:

o Click on a class: switch the active tab to the related file

e Click on an attribute: scroll to the associated line and high-
light it

o Click on a method: same, and update the sequence diagram
to display the clicked method.

In addition, VisUML also displays a Sequence Diagram, presen-
ted in Figure 2, that reflect the currently browsed method (in the
code), or the clicked one in the Class Diagram. This diagram shows
information about the sequential flow of the body of the method.
Every element is interactive and a click on it will scroll and high-
light the associated line in the IDE. Moreover, a special interaction
(currently implemented with an alt+click on a message that refers
to a method that can be displayed) allows users to easily navigate
between methods in this diagram. In addition to these interaction,

a caret listener triggers the update of the sequence diagram when
the user’s caret is inside a method. Several utility functions are also

A-52

M. Duruisseau et al.

Figure 1: An example of class diagram in VisUML

available, and allow users to show more or less information, such
as the depth level of the diagram.

Figure 2: An example of sequence diagram

In this demo we want to show the benefits of using live and
interactive diagrams. Our scenario will refer to an understanding
phase, when the developer must learn how an existing project is
structured. Using only VisUML, he will be able to see and navigate
in a graphical representation of this project.

A presentation video is available at this address: https://www.
youtube.com/watch?v=buyGojmbUpQ. This video shows how the
tool works and all the possible interactions that are actually im-
plemented. Since our tool is working both on the IDE and a web
page, it is simpler to show the interactions with a movie than
with pictures. Finally, an often updated document, is available on-
line: http://these.mickaelduruisseau.fr/VisUML/doc/index.html. It
present how to install the plugin, and sum-up the different interac-
tions and utility functions.

REFERENCES

[1] Ateret Anaby-Tavor, David Amid, Amit Fisher, Avivit Bercovici, Harold Ossher,
Matthew Callery, Michael Desmond, Sophia Krasikov, and Ian Simmonds. 2010.
Insights into enterprise conceptual modeling. Data and Knowledge Engineering
69, 12 (2010), 1302-1318. DOI:http://dx.doi.org/10.1016/j.datak.2010.10.003
Michel R. V. Chaudron, Werner Heijstek, and Ariadi Nugroho. 2012. How effective
is UML modeling ? Software & Systems Modeling 11, 4 (2012), 571-580. DOI:
http://dx.doi.org/10.1007/s10270-012-0278-4

T Girba and A Chis. 2015. Pervasive software visualizations (keynote). In 2015
IEEE 3rd Working Conference on Software Visualization (VISSOFT). 1-5. DOI:
http://dx.doi.org/10.1109/VISSOFT.2015.7332409

T R G Green and M Petre. 1996. Usability Analysis of Visual Programming
Environments: a ‘cognitive dimensions’ framework. JOURNAL OF VISUAL LAN-
GUAGES AND COMPUTING 7 (1996), 131-174.

Daniel L Moody. 2009. The “Physics” of Notations: Towards a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Transactions on
Software Engineering 35 (2009), 756-779.

Marian Petre. 2013. UML in practice. Proceedings - International Conference on
Software Engineering (2013), 722-731. DOI:http://dx.doi.org/10.1109/ICSE.2013.
6606618

—_
)


A-52

https://www.youtube.com/watch?v=buyGojmbUpQ
https://www.youtube.com/watch?v=buyGojmbUpQ
http://these.mickaelduruisseau.fr/VisUML/doc/index.html
http://dx.doi.org/10.1016/j.datak.2010.10.003
http://dx.doi.org/10.1007/s10270-012-0278-4
http://dx.doi.org/10.1109/VISSOFT.2015.7332409
http://dx.doi.org/10.1109/ICSE.2013.6606618
http://dx.doi.org/10.1109/ICSE.2013.6606618

	Abstract
	Résumé
	1 Introduction
	2 VisUML presentation
	References

