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Abstract

This paper addresses the issue of quantifying uncertainty bounds wHating the finite element model
of a mechanical structure from measurement data. The problem assts assess the validity of the
parameters identification and the accuracy of the results obtained. Indipisrpa covariance estimation
procedure is proposed about the updated parameters of a finite elenoatel, which propagates the
data-related covariance to the parameters by considering a first-celesitivity analysis. In particular,
this propagation is performed through each iteration step of the updating naiaiion problem, by
taking into account the covariance between the updated parameters arthta-related quantities.
Numerical simulations on a beam show the feasibility and the effectivenessroéthod.

1. INTRODUCTION

The use of state-space model identificationin the analysis of vibrating sesaanstitutes an interest-
ing research topic in mechanical engineering [1], known as experimantidl analysis. In many cases,
the modal parameters of a structure — i.e., eigenfrequencies, dampingaradiobserved mode shapes
— are sought from vibration data. The stochastic subspace identificatitrodh€sSl), as presented
by Van Overschee and De Moor [2], can be considered to addrestadhis It identifies a stochastic
state-space model from output-only measurements, where it is assumtbtimuut is a realization of
a white noise stochastic process. Two implementations of the SSI method bpeegiaion have been
proposed in [3], hamely, the covariance-driven (SSI-cov) anddidtan (SSI-data) implementations.

In the field of subspace identification methods, a finite element (FE) babsgane fitting (SF)
approach has been recently proposed [4] which makes use of & édaresh of a structure. This leads
to a minimization problem that consists in correlating a FE-based extendedalnfiey matrix with an
experimental one [5]. A model reduction technique which uses the cootemde basis truncation is
considered to speed up the computation of the SF minimization problem. TheseH-8& approach
can be used to identify either the structural or modal parameters of vibsitimgures.

For any system identification method, the estimated parameters are afflictechadttiainties [6].
In a broad sense, uncertainties can be classified into two categoriesdl8atory (irreducible) and
epistemic (reducible) uncertainties, and in many cases there is no strict titistibetween these two
categories. Aleatory uncertainty may result from geometric dimension ¥dgialue to manufacturing
tolerances or inherent variability of materials such as concrete, while epistecertainty is caused
by lack of knowledge (e.g. due to finite number of data samples, undefinasuneenent noises, non-
stationary excitations, and so on).

The statistical nature of subspace identification methods underlines thefrrediding statistical
evaluation of the estimated parameters. Two commonly used approachesgiitaimyg propagation are



the Monte Carlo (MC) method [8] and the perturbation method [9]. The MC naelias been widely
used in the resolution of mathematical and statistical problems [10]. The kacatssists in estimat-
ing the occurrence of the statistical expectation of a certain variable bysheéatochastic sampling
experiments [11]. The advantages of the MC method especially lies in its Easplementation and
good accuracy. However, its major drawback is that it requires huggpue@tional costs for tackling
engineering problems.

Several studies made on the estimation of uncertainties in the identification of pawdeeters,
from SSI, can be found in the literature [6, 9, 12]. These techniquedkénperturbation analyzes and
appear to be interesting to estimate the variance of identified eigenfregei@ncdienodal damping co-
efficients, as well as the covariance of identified mode shapes. Ind@yiance matrices of estimates
obtained from Maximum Likelihood, and prediction error based paramstenaion methods, have
been used to obtain uncertainty bounds. In [12], a similar approacheleasdpplied within the frame-
work of operational modal analysis to obtain uncertainty bounds aboutdidal parameters estimated
from SSI. The methodology described in [12] has been developedifputonly data acquired in a sin-
gle experiment. In [6], an efficient algorithmic scheme has been progosged up the computation
of uncertainties.

The motivation behind the present work is to propose a variance anafytbis structural param-
eters obtained from the FE-based SF method. The proposed approakiesnpropagating, through
sensitivity analysis, first-order perturbations from the data to the idenyedmeters [9, 13]. The
derivations of the covariances of the FE model parameters constitutagamabcontribution of the

paper.

2. FE-BASED SF METHOD AND UNCERTAINTIES QUANTIFICATION

2.1 Framework

The vibration behavior of a structure can be described through a igaree linear time-invariant (LTI)
state-space model, as follows:

Xkt1 = AXk + Vk,

{ 1)

Yk = ka + Wk,

wherexy € R?" is the state vectoyy € R is the vector of measurement outputs. Aldos R>"2" and
C € R™?" are state transition and output matrices, respectively, expressed by

0 |
A:exp([_MlK —Mnly] T> , C=[Hg—HaMK | Hy—HaM1y]. 2)

whereM € R™" K € R™" andy € R™" are, respectively, the mass, stiffness and viscous damping
matrices and is the sampling rate. Alsd{y4, H, andH,; € R"™*" are Boolean matrices to localize the
degrees of freedom (DOFs) at which displacements, velocities anteeat@@ns are measured in the
vectory € R". Finally,v € R" andw € R" are white noise vectors of unmeasured excitation forces and
measurement noise, respectively. Furthermore, the observability matagiated with the state-space
representation (1) can be expressed as

C

CA

o=\ . 3)

C(L\)p

Model updating has the purpose to calibrate the parameters of a FE molehatisome model prop-

erties are close to the truly observed structural properties. In the ggd@®F method, the considered
quantity for calibration is the extended observability matfix The main idea is to correlate — in a
least squares sense — the matpiobtained from experimental data with a reduced mafrixo") e



R(PHDT<™ wheren, < n. The extended observability matrix"(8") is issued from a FE model of the
structure and a mode-based model reduction technique, which consistgdnting the FE matrices
(mass, stiffness and damping) on a reduced basis of mode shapet] feedrther details). Hence, a
SF minimization problem can be proposed as follows:

0" =argmin/|r|3, 1= |lzn @ (I(pray — O67)| vec{S"(8")}, (4)

where@" € R™ is the vector of structural parameters of the FE model to be updated. Qne wiost
popular and effective algorithms for solving least squares problemsiljke the Gauss-Newton method.
The flowchart of the related approach is reported in Figure 1. HerepdttiécesS -, 5, andSg denote
the covariances of matrices related to the SF approach and are obtameghthrsensitivity analysis.
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Figure 1 : Flowchart of the SF based approach

LetY be a matrix-valued function of. Using delta notation, theoretical first-order perturbations
are defined, yielding:

vec{AY} = Zyxvec{AX}. (5)
The covariance of is defined as:
cov(Y) = vec{AY } (vec{AY})T (6)
and follows from a Taylor approximation, i.e.:
vec(Y(X)} =~ vecY(X)} + _#xvec{X —X} = covY(X))~ A xEx Ax, (7)

where _#y x is the sensitivity matrix, defined by?y x = dvec{Y(X)}/dvec{X}. A consistent estimate
is obtained by replacing, in the sensitivity matrix, the theoretical variabledth consistent estimates
X issued from data.

Using this relationship, a perturbation in measurements is propagated taivardbservability
matrix ¢ and ultimately the structural parameters through the Gauss-Newton algoritbbtatio the
related sensitivity matrices.



2.2 Extended observability matrix estimation and uncertainties quatification

Define the output covariance mati% € R"™*" as

% = ElYkriyk ], (8)
and the state-output covariance mateix R>™" as

G = E[Xkr 1Yk - 9)

The output covariance matricgg can be stacked into a block Hankel matd& < R(PHYr<ar \where
p andq are chosen such thain(pr,qr) > 2n, as follows:

K Ko ... Ay
- <%_:’2 g?s -. %n?ﬂ (10)
s Boss - Fose
An interesting feature of the Hankel matti¥ is that it can be factorized, as follows [14]:
H =0F, (11)

where¢ e R(PTDr<2 s the extended observability matrix (see Eq. (3)), &hd R2™% js the control-
lability matrix, given by
¢=[G AG ... ATIG]. (12)

Notice that the matrix is full column rank [2,4]. Within the SSI framework [3], an estima#e of the
output Hankel matrix»#” can be built fromN + p+ g measurements, i.e.:

H = %W(@‘)T, (13)
where
Yo  Yo+1 -+ YN+g-1 Yori  Yq+2 .- YN+q
g [Pt Yo ) Ve Y e (14)
Yo y2 ..o WN yq+lp+l yq+.p+2 . YN+. p+q

The derivation of an estimate of the covariance of the Hankel matrix, nammelys achieved by splitting
the data matrice® * and% ~ in (14) inton, blocks, as follows:

vt =mt W, v = % .. Z]. (15)

Hence, for each pair of sub—matricéé‘j(‘, @j‘), the corresponding Hankel matrJ%A’j can be estimated
asin Eqg. (13):
~ 1 B
=04 )T, (16)
thrﬁNb =N/ny. As a result, one obtaing” = (1/ny) 3, 7. Also, the estimat& ,» can be written
as follows:

1 b N . N AT
2= mo—1) ;1 (vec{jfj} - vec{jf}) (vec{ﬁf,—} - vec{%}) .

17)



_ From (11), it can be readily proved tha#” and&’ share the same column space. Hence, an estimate
0 of the extended observability matrix can be obtained from a Singular Valoerygosition (SVD) of
¢ and its truncation at the ordenZ.e.:

A =UT =[U; Ug |t D Vil ~ Ui (18)
and thus .
0 =Uq, (19)

whered\; is the diagonal matrix of theredominant singular values o, andU; € R(P*Dr <21 js the
related matrix of left singular vectors.

A perturbationA.7” of the Hankel matrix is propagated towards the estimate of the extended ob-
servability matrix¢, see Eqg. (19). In order to express the perturbade the sensitivity of the matrix
of left singular vectordJ; (see Eq. (19)) is to be derived, as follows [6]:

B161
vec{AU1} = fu, »vec{DA#’} = : vec{AA#Y, (20)
a@ZnCKZn
where
A A Ay —1
4 AT 0 AT
T Y o qr—1,(p+1)r I I qr—1,(p+1)r | _
B [ (p+1)r‘|‘ o D < o |: %_P ) | @I] ) ( ar + |: 2Vi Uiz
(21)
and L )
| — uju; Tl
& — — |V (p+Dr i +1)r ] 22
=3 [ (el (22)

whereu; andv; stand for theé—th left and right singular vectors, respectively. Then, an estimate of the
covariance matrix o’ can be derived from (7) as

So= Jopnwsw I, n- (23)

2.3 Structural parameters updating and uncertainties quantificaion

The Gauss-Newton method [15] is based on a second-order exparfigtom objective function|r||3

about some approximated values of the paramﬂ.’érand iteration steps so as to find the local extrema
of ||r||3. Assuming an initial deterministic parameter vaff thek—th iteration k > 1) of the Gauss-
Newton algorithm can be written as

O =06y 1 — 7k, (24)
wnereg, = IS tTne vector of structural parameters identified at Iiter SO, rg Is the
heref = [0, --- er?h JT is the vector of structural ters identified at iteraktiol is th

residual vector and?;! is the Moore-Penrose pseudoinverse of the Jacobian maiixe R2(P+1mxm,
at iterationk, defined as:

k= 120® (1 1 — 66" vec{ "B}, (25)

and
= ['2n®(|(p+1 )} Hongh - (26)

Here, the sensitivity matrix? one is expressed by:

_ [oveco"(@M} avec{oM(@OM)}
/ﬁheﬂl [ o6n o6k }

oh=al , - (27)



hghy . , . . I
% is obtained by numerical differentiation.
]

Separating zeroth- and first-order terms and using the fact thafABdc= (BT @ | 5)vec[{A} for
any matricedA € R¥*P andB e RP*¢[16], this yields

where

ABR =N8]_; — (1} @I, )vec{d 71} — #1Ar. (28)
Assume that the perturbatidxeﬂ is linked to the perturbation of the observability matrix as follows:
A8} = .#vec[AG}  Yk> 1. (29)
Then, by introducing Eg. (29) in Eqg. (28), it comes:
M= M1~ (1 Do) BN~ 7 Dx (30)

where.Zy = Op, 2n(p+1)r due to the deterministic nature of the initial value. In (3@, -#k and 2y are
matrices which link vegA /rl} andAr to vec{A&'}. They are expressed as follows:

L = (- AD @A I) U+ Datprom © (AL 70) T Popesynem — (DT 21, (31)
Mk

o= |7, (32)
ok

M = [0 Singy ) N+ [0 =000 1 g i (33
- (/2h,9jqk,l) MA} {-1(66N @ (67 6) ™+ (pr1) @ (67 6) PP prayan— (6T @67,

9 = —((6"6"OF 1) @1 prar| (6N @0+ [y @ U piny — 66N Sy Mir  (39)
- (ﬁ““(eﬂ1>)T®é’]{—[(ﬁ“é*f@(ﬁ“%rl}+[lmm®<é’%‘>—11}@(p+1)r,2n,

where Z,, are permutation matrices defined such that{¥dd = Z,pvec{A} [6, 12]; also,
* +1)rx2n; i % = 5 [ -
/5“79}ka1 e R(PHDr=<2n s defined such that V@%“ﬂ}‘,k,l} = /ﬁh_yejh‘ _ While 7 .. oy, isde

sh gh
(91

fined such that qusjﬁt’h,ejhk l} = //:}h N 79E71vec{A9E,1} and is obtained by numerical differenti-
= T 008

ation.
Hence, an estimate of the covariance matrix of the identified vector of stuup'amametereh, at
iterationk of the SF minimization procedure (see Eq. (4)), is given by:

292 = %kiﬁjlg. (35)

3. NUMERICAL APPLICATION

The theory described in Section 2 is applied through the analysis of a 3D FEelmba beam in
operational modal analysis. Here, a clamped-free beam is considithatiiwensions fnx 0.1mx 0.1m
as shown in Figure 2.

The vibrating behavior of the beam is analyzed with the FE method in ordeisesads time
response. The output data refer to the transverse displacement ¢futikeire which is recorded by
means of one displacement sensor located at the free end of the bedmyasrsFigure 2. Numerical
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Clamped face

Figure 2 : lllustration of the 3D FE mesh of the beam.

vibration data are thus considered, which are sampled at a frequea@B@fz. In addition, different
white noise rates are added to the data at a Signal to Noise Ratio (SNR) ot@dBo

The FE-based SF approach and uncertainties quantification are intestibyathis framework, a coarse
FE mesh based on the Euler-Bernoulli beam theory is considered, w&s gh&igure 3. This mesh is
made up of 10 Euler-Bernoulli beam elements of same length with six DOFsder iThe issue here

<z
.
X
@ @ @ @ @ @ @ L

L=1m

A

ANNNRRNNN
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Figure 3 : Coarse FE mesh of the beam.

consists in updating the Young’s modulus — namEly; of the coarse 1D FE model, which is assumed
to be unknown. This yields a single-parameter SF minimization problem, as follows

E=argmif|r||3 where r= [Ian ® (1 (prayr — 63’5’*)} vec{é’h(E)}, (36)

whered" is the observability matrix issued from the 1D FE model of the beam (FiguseitB),p = 50
and D, = 14. The minimization procedure is repeated for different levels of nosecen providing
different estimates of the updated Young’s modulus, with different estinohtbe standard deviations
O = \/i (see Table 1). The results show clearly that the dispersion of the Yoormadulus increases
as the noise level growths, as expected. BelodB6f the SNR, the estimated standard deviation is
higher than 25%, i.e., the estimated Young’s modulus is inaccurate.

4. CONCLUSION

A SF strategy has been proposed to calculate covariance estimates wiaéngifhe parameters of a FE
model from measurement data of a vibrating structure. The procedurweésvpropagating first-order
perturbations at each iteration step of the Gauss-Newton algorithm whictoised in the resolution
of the SF minimization problem. The relevance of the proposed approacheeashighlighted for
identifying the Young’s modulus of a numerical beam, subject to varioussl®@fenoise, and related
uncertainty bounds.



Table 1 : Updated Young's modulus and related standard tiewsa
SNR [dB] Updated Young modulusk [GPg Standard deviation og [GP4q

40 203 002

35 202 002

30 202 005

25 203 015

20 202 056

15 209 343
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