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Abstract
This paper addresses the issue of quantifying uncertainty bounds when updating the finite element model
of a mechanical structure from measurement data. The problem arisesas to assess the validity of the
parameters identification and the accuracy of the results obtained. In this paper, a covariance estimation
procedure is proposed about the updated parameters of a finite element model, which propagates the
data-related covariance to the parameters by considering a first-ordersensitivity analysis. In particular,
this propagation is performed through each iteration step of the updating minimization problem, by
taking into account the covariance between the updated parameters and the data-related quantities.
Numerical simulations on a beam show the feasibility and the effectiveness of the method.

1. INTRODUCTION

The use of state-space model identificationin the analysis of vibrating structures constitutes an interest-
ing research topic in mechanical engineering [1], known as experimentalmodal analysis. In many cases,
the modal parameters of a structure — i.e., eigenfrequencies, damping ratiosand observed mode shapes
— are sought from vibration data. The stochastic subspace identification method (SSI), as presented
by Van Overschee and De Moor [2], can be considered to address thistask. It identifies a stochastic
state-space model from output-only measurements, where it is assumed thatthe input is a realization of
a white noise stochastic process. Two implementations of the SSI method of equal precision have been
proposed in [3], namely, the covariance-driven (SSI-cov) and data-driven (SSI-data) implementations.

In the field of subspace identification methods, a finite element (FE) based subspace fitting (SF)
approach has been recently proposed [4] which makes use of a coarse FE mesh of a structure. This leads
to a minimization problem that consists in correlating a FE-based extended observability matrix with an
experimental one [5]. A model reduction technique which uses the concept of mode basis truncation is
considered to speed up the computation of the SF minimization problem. The FE-based SF approach
can be used to identify either the structural or modal parameters of vibratingstructures.

For any system identification method, the estimated parameters are afflicted with uncertainties [6].
In a broad sense, uncertainties can be classified into two categories [7] of aleatory (irreducible) and
epistemic (reducible) uncertainties, and in many cases there is no strict distinction between these two
categories. Aleatory uncertainty may result from geometric dimension variability due to manufacturing
tolerances or inherent variability of materials such as concrete, while epistemic uncertainty is caused
by lack of knowledge (e.g. due to finite number of data samples, undefined measurement noises, non-
stationary excitations, and so on).

The statistical nature of subspace identification methods underlines the needof providing statistical
evaluation of the estimated parameters. Two commonly used approaches in uncertainty propagation are



the Monte Carlo (MC) method [8] and the perturbation method [9]. The MC method has been widely
used in the resolution of mathematical and statistical problems [10]. The key idea consists in estimat-
ing the occurrence of the statistical expectation of a certain variable by means of stochastic sampling
experiments [11]. The advantages of the MC method especially lies in its ease of implementation and
good accuracy. However, its major drawback is that it requires huge computational costs for tackling
engineering problems.

Several studies made on the estimation of uncertainties in the identification of modal parameters,
from SSI, can be found in the literature [6, 9, 12]. These techniques invoke perturbation analyzes and
appear to be interesting to estimate the variance of identified eigenfrequencies and modal damping co-
efficients, as well as the covariance of identified mode shapes. In [9], covariance matrices of estimates
obtained from Maximum Likelihood, and prediction error based parameter estimation methods, have
been used to obtain uncertainty bounds. In [12], a similar approach has been applied within the frame-
work of operational modal analysis to obtain uncertainty bounds about themodal parameters estimated
from SSI. The methodology described in [12] has been developed for output-only data acquired in a sin-
gle experiment. In [6], an efficient algorithmic scheme has been proposedto speed up the computation
of uncertainties.

The motivation behind the present work is to propose a variance analysis of the structural param-
eters obtained from the FE-based SF method. The proposed approach involves propagating, through
sensitivity analysis, first-order perturbations from the data to the identifiedparameters [9, 13]. The
derivations of the covariances of the FE model parameters constitute an original contribution of the
paper.

2. FE-BASED SF METHOD AND UNCERTAINTIES QUANTIFICATION

2.1 Framework

The vibration behavior of a structure can be described through a discrete-time linear time-invariant (LTI)
state-space model, as follows:

{

xk+1 = Axk+vk,

yk = Cxk+wk,
(1)

wherexk ∈ R
2n is the state vector,yk ∈ R

r is the vector of measurement outputs. Also,A ∈ R
2n×2n and

C ∈ R
r×2n are state transition and output matrices, respectively, expressed by

A = exp

([

0 In

−M−1K −M−1γ

]

τ
)

, C =
[

Hd −HaM−1K | Hv−HaM−1γ
]

. (2)

whereM ∈ R
n×n, K ∈ R

n×n andγ ∈ R
n×n are, respectively, the mass, stiffness and viscous damping

matrices andτ is the sampling rate. Also,Hd, Hv andHa ∈ R
r×n are Boolean matrices to localize the

degrees of freedom (DOFs) at which displacements, velocities and accelerations are measured in the
vectory ∈ R

r . Finally, v ∈ R
n andw ∈ R

r are white noise vectors of unmeasured excitation forces and
measurement noise, respectively. Furthermore, the observability matrix associated with the state-space
representation (1) can be expressed as

O =











C
CA

...
C(A)p











. (3)

Model updating has the purpose to calibrate the parameters of a FE model such that some model prop-
erties are close to the truly observed structural properties. In the proposed SF method, the considered
quantity for calibration is the extended observability matrixO. The main idea is to correlate – in a
least squares sense – the matrixÔ obtained from experimental data with a reduced matrixÕh(θθθ h) ∈



R
(p+1)r×nr , wherenr ≪ n. The extended observability matrix̃Oh(θθθ h) is issued from a FE model of the

structure and a mode-based model reduction technique, which consists in projecting the FE matrices
(mass, stiffness and damping) on a reduced basis of mode shapes (see [4] for further details). Hence, a
SF minimization problem can be proposed as follows:

θθθ h = argmin||r ||22, r =
[

I2nr ⊗ (I (p+1)r − ÔÔ†)
]

vec{Õh(θθθ h)}, (4)

whereθθθ h ∈ R
nh is the vector of structural parameters of the FE model to be updated. One ofthe most

popular and effective algorithms for solving least squares problems like (4) is the Gauss-Newton method.
The flowchart of the related approach is reported in Figure 1. Here, thematricesΣ̂H , Σ̂O andΣ̂θθθ denote
the covariances of matrices related to the SF approach and are obtained through a sensitivity analysis.
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Ô Σ̂O

Σ̂H

Finite element

mesh

Vibrating structure

Õ
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Figure 1 : Flowchart of the SF based approach

Let Y be a matrix-valued function of̂X. Using delta notation, theoretical first-order perturbations
are defined, yielding:

vec{∆Y}= JY,Xvec{∆X}. (5)

The covariance ofY is defined as:

cov(Y) = vec{∆Y}(vec{∆Y})T (6)

and follows from a Taylor approximation, i.e.:

vec{Y(X̂)} ≈ vec{Y(X)}+JY,Xvec{X̂−X} ⇒ cov(Y(X̂))≈ JY,XΣ̂XJ T
Y,X, (7)

whereJY,X is the sensitivity matrix, defined byJY,X = ∂vec{Y(X)}/∂vec{X}. A consistent estimate
is obtained by replacing, in the sensitivity matrix, the theoretical variablesX with consistent estimates
X̂ issued from data.

Using this relationship, a perturbation in measurements is propagated towardsthe observability
matrix Ô and ultimately the structural parameters through the Gauss-Newton algorithm toobtain the
related sensitivity matrices.



2.2 Extended observability matrix estimation and uncertainties quantification

Define the output covariance matrixRi ∈ R
r×r as

Ri = E[yk+iyT
k ], (8)

and the state-output covariance matrixG ∈ R
2n×r as

G = E[xk+1yT
k ]. (9)

The output covariance matricesRi can be stacked into a block Hankel matrixH ∈ R
(p+1)r×qr, where

p andq are chosen such thatmin(pr,qr)≥ 2n, as follows:

H =











R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...
Rp+1 Rp+2 . . . Rp+q











. (10)

An interesting feature of the Hankel matrixH is that it can be factorized, as follows [14]:

H = OC , (11)

whereO ∈ R
(p+1)r×2n is the extended observability matrix (see Eq. (3)), andC ∈ R

2n×qr is the control-
lability matrix, given by

C =
[

G AG . . . Aq−1G
]

. (12)

Notice that the matrixO is full column rank [2,4]. Within the SSI framework [3], an estimatêH of the
output Hankel matrixH can be built fromN+ p+q measurements, i.e.:

Ĥ =
1
N

Y +(Y −)T , (13)

where

Y − =











yq yq+1 . . . yN+q−1

yq−1 yq . . . yN+q−2
...

...
. ..

...
y1 y2 . . . yN











, Y + =











yq+1 yq+2 . . . yN+q

yq+2 yq+3 . . . yN+q+1
...

...
. ..

...
yq+p+1 yq+p+2 . . . yN+p+q











. (14)

The derivation of an estimate of the covariance of the Hankel matrix, namelyΣ̂H , is achieved by splitting
the data matricesY + andY − in (14) intonb blocks, as follows:

Y + =
[

Y +
1 Y +

2 . . . Y +
nb

]

, Y − =
[

Y −
1 Y −

2 . . . Y −
nb

]

. (15)

Hence, for each pair of sub-matrices (Y +
j , Y −

j ), the corresponding Hankel matrix̂H j can be estimated
as in Eq. (13):

Ĥ j =
1
Nb

Y +
j (Y −

j )T , (16)

whereNb = N/nb. As a result, one obtainsĤ = (1/nb)∑nb
j=1Ĥ j . Also, the estimatêΣH can be written

as follows:

Σ̂H =
1

nb(nb−1)

nb

∑
j=1

(

vec{Ĥ j}−vec{Ĥ }
)(

vec{Ĥ j}−vec{Ĥ }
)T

. (17)



From (11), it can be readily proved thatH andO share the same column space. Hence, an estimate
Ô of the extended observability matrix can be obtained from a Singular Value Decomposition (SVD) of
Ĥ and its truncation at the order 2n, i.e.:

Ĥ = U∆VT =
[

U1 U0
]

[

∆1 0
0 ∆0

][

VT
1

VT
0

]

≈ U1∆1VT
1 , (18)

and thus
Ô = U1, (19)

where∆1 is the diagonal matrix of the 2n dominant singular values ofĤ , andU1 ∈ R
(p+1)r×2n is the

related matrix of left singular vectors.
A perturbation∆H of the Hankel matrix is propagated towards the estimate of the extended ob-

servability matrixÔ, see Eq. (19). In order to express the perturbation∆Ô, the sensitivity of the matrix
of left singular vectorsU1 (see Eq. (19)) is to be derived, as follows [6]:

vec{∆U1}= JU1,H vec{∆Ĥ }=







B1C1
...

B2nC2n






vec{∆Ĥ }, (20)

where

Bi =

[

I (p+1)r +
Ĥ

σi
Di

(

Ĥ T

σi
−

[

0qr−1,(p+1)r

uT
i

]

) ∣

∣

∣

∣

∣

Ĥ

σi
Di

]

, Di =

(

Iqr +

[

0qr−1,(p+1)r

2vT
i

]

−
Ĥ TĤ

σ2
i

)−1

(21)
and

Ci =
1
σi

[

(I (p+1)r −uiuT
i )(v

T
i ⊗ I (p+1)r)

(Iqr −vivT
i )(Iqr ⊗uT

i )

]

, (22)

whereui andvi stand for thei−th left and right singular vectors, respectively. Then, an estimate of the
covariance matrix ofÔ can be derived from (7) as

Σ̂O = JU1,H Σ̂H J T
U1,H . (23)

2.3 Structural parameters updating and uncertainties quantification

The Gauss-Newton method [15] is based on a second-order expansionof the objective function||r ||22
about some approximated values of the parametersθθθ h, and iteration steps so as to find the local extrema
of ||r ||22. Assuming an initial deterministic parameter valueθθθ h

0, thek−th iteration (k≥ 1) of the Gauss-
Newton algorithm can be written as

θθθ h
k = θθθ h

k−1−J †
rk

r k, (24)

whereθθθ h
k = [θ h

1,k · · · θ h
nh,k

]T is the vector of structural parameters identified at iterationk. Also, r k is the

residual vector andJ †
rk is the Moore-Penrose pseudoinverse of the Jacobian matrixJrk ∈R

2(p+1)rn×nh,
at iterationk, defined as:

r k =
[

I2n⊗ (I (p+1)r − ÔÔ†)
]

vec
{

Oh(θθθ h
k−1)

}

, (25)

and
Jrk =

[

I2n⊗ (I (p+1)r − ÔÔ†)
]

JOh,θθθh
k−1

. (26)

Here, the sensitivity matrixJOh,θθθh
k−1

is expressed by:

JOh,θθθh
k−1

=
[

∂vec{Oh(θθθ h)}

∂θ h
1

. . . ∂vec{Oh(θθθ h)}
∂θ h

nh

]∣

∣

∣θθθ h=θθθ h
k−1

, (27)



where∂vec{Oh(θθθ h)}

∂θ h
j

is obtained by numerical differentiation.

Separating zeroth- and first-order terms and using the fact that vec{AB} = (BT ⊗ Ia)vec{A} for
any matricesA ∈ R

a×b andB ∈ R
b×c [16], this yields

∆θθθ h
k = ∆θθθ h

k−1− (rT
k ⊗ Inh)vec{∆J †

rk
}−J †

rk
∆r k. (28)

Assume that the perturbation∆θθθ h
k is linked to the perturbation of the observability matrix as follows:

∆θθθ h
k = Mkvec{∆Ô} ∀k≥ 1. (29)

Then, by introducing Eq. (29) in Eq. (28), it comes:

Mk = Mk−1− (rT
k ⊗ Inh)LkNk−J †

rk
Qk (30)

whereM0 = 0nh,2n(p+1)r due to the deterministic nature of the initial value. In (30),Lk, Nk andQk are

matrices which link vec{∆J †
rk} and∆r k to vec{∆Ô}. They are expressed as follows:

Lk = {−[(JrkJ
†
rk
)T ⊗ (J T

rk
Jrk)

−1]+ [I2(p+1)rnr
⊗ (J T

rk
Jrk)

−1]}P2(p+1)rnr ,nh
− [(J †

rk
)T ⊗J †

rk
], (31)

Nk =











N1,k

N2,k
...

Nnh,k











, (32)

N j,k = −

[

(

Ô†J ∗
Õh,θ h

j,k−1

)T
⊗ I (p+1)r

]

+
[

I2nr ⊗ (I (p+1)r − ÔÔ†)
]

JJ ∗

Õh,θh
j,k−1

,θθθ h
k−1

Mk−1 (33)

−

[

(

J ∗
Õh,θ h

j,k−1

)T
⊗ Ô

]

{−[(ÔÔ†)T ⊗ (ÔTÔ)−1]+ [I (p+1)r ⊗ (ÔTÔ)−1]}P(p+1)r,2n− [(Ô†)T ⊗ Ô†],

Qk = −

[

(

Ô†Õh(θθθ h
k−1)

)T
⊗ I (p+1)r

]

− [(Ô†)T ⊗ Ô†]+
[

I2nr ⊗ (I (p+1)r − ÔÔ†)
]

JÕh,θθθ h
k−1

Mk−1 (34)

−

[

(

Õh(θθθ h
k−1)

)T
⊗ Ô

]

{−[(ÔÔ†)T ⊗ (ÔTÔ)−1]+ [I (p+1)r ⊗ (ÔTÔ)−1]}P(p+1)r,2n,

where Pa,b are permutation matrices defined such that vec{AT} = Pa,bvec{A} [6, 12]; also,
J ∗

Õh,θ h
j,k−1

∈ R
(p+1)r×2nr is defined such that vec{J ∗

Õh,θ h
j,k−1

} = JÕh,θ h
j,k−1

, while JJ ∗

Õh,θh
j,k−1

,θθθ h
k−1

is de-

fined such that vec{∆J ∗
Õh,θ h

j,k−1
}=JJ ∗

Õh,θh
j,k−1

,θθθ h
k−1

vec{∆θθθ h
k−1} and is obtained by numerical differenti-

ation.
Hence, an estimate of the covariance matrix of the identified vector of structural parametersθθθ h

k, at
iterationk of the SF minimization procedure (see Eq. (4)), is given by:

Σ̂θθθ h
k
= MkΣ̂OM T

k . (35)

3. NUMERICAL APPLICATION

The theory described in Section 2 is applied through the analysis of a 3D FE model of a beam in
operational modal analysis. Here, a clamped-free beam is considered with dimensions 1m×0.1m×0.1m
as shown in Figure 2.

The vibrating behavior of the beam is analyzed with the FE method in order to assess its time
response. The output data refer to the transverse displacement of the structure which is recorded by
means of one displacement sensor located at the free end of the beam, as shown in Figure 2. Numerical
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Figure 2 : Illustration of the 3D FE mesh of the beam.

vibration data are thus considered, which are sampled at a frequency of1280Hz. In addition, different
white noise rates are added to the data at a Signal to Noise Ratio (SNR) of 40 to10dB.
The FE-based SF approach and uncertainties quantification are investigated. In this framework, a coarse
FE mesh based on the Euler-Bernoulli beam theory is considered, as shown in Figure 3. This mesh is
made up of 10 Euler-Bernoulli beam elements of same length with six DOFs per node. The issue here

L = 1m

x

y

z

Figure 3 : Coarse FE mesh of the beam.

consists in updating the Young’s modulus – namely,E – of the coarse 1D FE model, which is assumed
to be unknown. This yields a single-parameter SF minimization problem, as follows:

E = argmin||r ||22 where r =
[

I2nr ⊗ (I (p+1)r − ÔÔ†)
]

vec
{

Õh(E)
}

, (36)

whereÕh is the observability matrix issued from the 1D FE model of the beam (Figure 3),with p= 50
and 2nr = 14. The minimization procedure is repeated for different levels of noise, hence providing
different estimates of the updated Young’s modulus, with different estimatesof the standard deviations
σE =

√

Σ̂E (see Table 1). The results show clearly that the dispersion of the Young’s modulus increases
as the noise level growths, as expected. Below 20dB of the SNR, the estimated standard deviation is
higher than 25%, i.e., the estimated Young’s modulus is inaccurate.

4. CONCLUSION

A SF strategy has been proposed to calculate covariance estimates when updating the parameters of a FE
model from measurement data of a vibrating structure. The procedure involves propagating first-order
perturbations at each iteration step of the Gauss-Newton algorithm which is involved in the resolution
of the SF minimization problem. The relevance of the proposed approach hasbeen highlighted for
identifying the Young’s modulus of a numerical beam, subject to various levels of noise, and related
uncertainty bounds.



Table 1 : Updated Young’s modulus and related standard deviations.

SNR [dB] Updated Young modulusE [GPa] Standard deviation σE [GPa]
40 2.03 0.02
35 2.02 0.02
30 2.02 0.05
25 2.03 0.15
20 2.02 0.56
15 2.09 3.43
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