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Abstract

We present a new scheme for the discretization of heterogeneous

anisotropic diffusion problems on general meshes. With light assumptions,

we show that the algorithm can be written as a cell-centered scheme with

a small stencil and that it is convergent for discontinuous tensors. The

key point of the proof consists in showing both the strong and the weak

consistency of the method.

The efficiency of the scheme is demonstrated through numerical tests of

the 5th International Symposium on Finite Volumes for Complex Appli-

cations - FVCA 5. Moreover, the comparison with classical finite volume

schemes emphasizes the precision of the method. We also show the good

behaviour of the algorithm for nonconforming meshes.

Key words : Heterogeneous anisotropic diffusion, general grids, finite

volumes, finite elements, cell-centered scheme.

1 Introduction

The approximation of the solutions of the anisotropic heterogeneous diffusion prob-
lems is an important issue in several engineering fields. We mention a kind of these
problems, as follows:

{
−div (Λ(x)∇u) = f in Ω,
u = 0 on ∂Ω,

(1)

where the following assumptions hold:

(a) Ω is an open bounded connected polygonal subset of R2.

1This work was supported by GDR MOMAS and Project VFSitCom (ANR-08-BLAN-0275-01).



A cell-centered scheme for diffusion problems

(b) The diffusion (or permeability) tensor Λ : Ω → R2×2 is symmetric, piecewise
Lipschitz-continuous and such that the set of its eigenvalues is included in
[λ, λ], with λ and λ ∈ R satisfying 0 < λ ≤ λ.

(c) The function f is the source term and belongs to L2(Ω).

With assumptions (a)-(c), u is called the w solution of (1) if u satisfies

u ∈ H1
0 (Ω) and ∀v ∈ H1

0 (Ω),

∫

Ω

(Λ(x)∇u(x)) .∇v(x)dx =

∫

Ω

f(x)v(x)dx. (2)

The list of well-known discretization methods are finite difference methods, finite
element methods and finite volume methods. Each of these methods has its own
advantages and disadvantages.
The finite difference method is simple. Nevertheless, it is not widely used in practical
applications, since we need a smoothness assumption of the solution and it is not
applicable for the domains with a complex geometry.
The standard finite element method has the following advantages:

• It can be applied in domains with complex shapes. These domains can be
discretized by using triangular meshes.

• It uses the spaces of piecewise polynomials of degree 1 to approximate the
solution function. The basic functions of these spaces have small supports, so
the computation of this method is simple.

Unfortunately, in discontinuous diffusion problems coupled with convective trans-
port models, the approximation solutions computed by the standard finite element
method can be inaccurate [32].
The finite volume method which is a popular discretization method, is used to ap-
proximate the solutions of anisotropic heterogeneous diffusion problems. It allows us
to obtain the local conservativity of the fluxes which is significant in physics. This
method is classified into two main categories:

• “Cell-centered schemes” compute approximation values of the solution func-
tion at the centers of the cells of the primary mesh.

• Other schemes use not only usual cell unknowns but also interface unknowns
to compute approximation values of the solution function. In [14], HFV, MFD
and MFV which involve the cell and edge unknowns are schemes of the same
family. Besides, the DDFV schemes in [11], [21] which give precise solutions,
use techniques of dual mesh and involve the cell and vertex unknowns. How-
ever, all schemes in this category are computationally more expensive than
cell-centered schemes, because they use more unknowns.

Therefore, we pay attention to “Cell-centered schemes” which have small stencils
and only use cell unknowns. The so-called Multi Point Flux Approximation (MPFA)
[1], [2] involves the reconstruction of the gradient in order to evaluate the fluxes.
Nevertheless, these methods only satisfy coercivity under suitable conditions on
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both the mesh and the permeability tensor Λ. In [5], the authors need a coercivity
assumption which links the mesh and the tensor. There are also some schemes
which need either conditions on meshes or conditions on the permeability tensor.
For example, in [3], the condition is that the meshes are not too distorted. In [10],
the authors need a sufficient coercivity condition. In this kind of schemes, let us
also cite methods [12, 26, 27, 28, 29, 30, 31] which allow to obtain maximum and
minimum principles for diffusion problems on distorted meshes.
In this paper, the proposed scheme is designed on general meshes for heterogeneous
and anisotropic permeability tensors with the following advantages:

• The main idea of the scheme is based on that of the standard finite element
method and uses a technique of dual mesh. The dual mesh is chosen to be easily
recovered a cell centered scheme, i.e, the dual mesh unknowns are computed
by linear combinations of cell unknowns. This is different from other schemes
which use techniques of dual mesh such as DDFV schemes, because we can
not recover a cell centered scheme when using the dual mesh of the DDFV
scheme.

• It is a cell-centered scheme and its stencil is equal or less than a nine point
stencil on two dimensional quadrangular meshes.

• In heterogeneous and homogeneous anisotropic cases, it is locally conservative.

• In general cases, using a light assumption (hypothesis 3.1), the matrix which is
associated to our scheme, is symmetric and positive definite on general meshes.

The work is organized as follows: in §2, we introduce the methods to construct a dual
grid and a third grid. In §3, we present the scheme in isotropic homogeneous case and
in anisotropic heterogeneous case. Besides, we prove that the scheme is symmetric
and positive definite in general cases. In §4, we point out that the stencil of the
scheme is equal or less than a nine point stencil on two dimensional quadrangular
meshes. Additionally, there is a relationship with the formula used to compute edge
unknowns between our scheme and [3]. In §5, we prove that the scheme is convergent
for discontinuous tensors. In §6, it is devoted to numerical tests. We compare these
numerical results between our scheme and some other methods in the benchmark
FVCA 5.

2 Notations

Let Ω be an open bounded polygonal set of R2 with the boundary ∂Ω. We denote
three discretization families of Ω by D, D∗ and D∗∗, which are given by
1. D = (M, E ,P) such that
1a. M is a finite family of non empty connected open disjoint subsets of Ω such that
Ω =

⋃
K∈M

K. mK > 0 denotes the measure of K (the ”primary control volume”).

1b. E (the set of edges of the primary grid) is a set of disjoint subsets of Ω such
that, for all σ ∈ E , σ is a segment in R. We denote by mσ the measure of σ. Let
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K be an element of M, we assume that there exists a subset EK of E such that
∂K =

⋃
σ∈EK

σ and E =
⋃

K∈M
EK . The set of interior edges is denoted by Eint (resp.

Eext) with Eint = {σ ∈ E|σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E|σ ⊂ ∂Ω}).

1c. P = (xK)K∈M is a set of mesh points of the primary grid. For all K ∈ M,
xK ∈ K and K is assumed to be xK-star-shaped, i.e for all x ∈ K, [xK , x] ∈ K.

  

A sample primary mesh (solid lines) and its dual mesh (dashed lines)

2. D∗ = (M∗, E∗,P∗,V∗) such that
2a. The dual control volumes K∗ are defined by connecting mesh points of the pri-
mary control volumes and the midpoints of the edges belonging to ∂Ω . Moreover,
we assume that the lines joining their mesh points are inside Ω. In this case, M∗

which is a set of dual control volumes such that Ω =
⋃

K∗∈M∗
K∗, is defined and we

assume it fits the initial domain Ω. We denote by mK∗ > 0 the measure of K∗.

Remark 2.1: A sufficient condition to define the mesh M∗ is that, for neigh-
boring control volumes, the line joining their centers intersects their common edge.
This condition is not necessary.

2b. E∗ (the set of edges of the dual grid) is a set of disjoint subsets of Ω such
that, for all σ∗ ∈ E∗, σ∗ is a segment in R. We denote by mσ∗ the measure of σ∗.
Let K∗ be an element of M∗, we assume that there exists a subset EK∗ of E∗ such
that ∂K∗ =

⋃
σ∈EK∗

σ and E∗ =
⋃

K∗∈M∗
EK∗ .

2c. P∗ = (xK∗)K∗∈M∗ is the set of mesh points of the dual grid.

2d. V∗ is the set of vertices of the dual meshes which includes the primary mesh
points, the midpoints of the edges belonging to ∂Ω and the boundary vertices of Ω.

Remark 2.2: We do not always use the vertices of the primary mesh as dual
mesh points {xK∗}K∗∈M∗ . For example, we consider the following polygon Ω:
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we can not choose the vertex xK0 of the primary mesh to define the dual mesh point
of (xK1 , xK2 , xK3 , xK4) ∈M∗, because it is outside (xK1 , xK2 , xK3 , xK4).

3. D∗∗ = (M∗∗,V∗∗)
Now, we construct a third grid.
Let be K∗ ∈ M∗, if all the edges of EK∗ do not belong to the boundary ∂Ω, the
set of vertices of K∗ only contains mesh points of the primary control volumes. A
point xK∗ is chosen inside K∗ and connected to all vertices of K∗. We have the two
following examples to describe the construction of the third mesh:
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1

2

3

4

1

2

3
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             Figure 2.1
Figure 2.2

If K∗ has a vertex xK∗ belonging to the boundary of Ω, its dual mesh point is equal
to the vertex xK∗ (see figure 2.4). We connect xK∗ to the other vertices of K∗.

x

x

x

x

σ

σ

σ

Κ

Κ

Κ
1

2

2

1

2

∗
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Figure 2.4

In the above figures, we denote that:

• The primary mesh is represented by solid black lines.

• The dual mesh is represented by dashed black lines.
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• The third mesh is represented by dashed red and black lines.

• The primary mesh points xK1 , xK2 , xK3 , xK4 are elements of P.

• The dual mesh points xK∗ , xL∗ are elements of P∗.

• The edges σ1, σ2 are edges of the boundary of Ω.

• The points xσ1 , xσ2 are midpoints of the edges σ1, σ2.

From the construction of the third grid, this implies that it is a subgrid of the dual
grid.
3a. M∗∗ is a finite family of sub-triangles such that Ω = ∪

T∈M∗∗
T .

3b. V∗∗ is a finite set of vertices of the third grid such that, for all T ∈M∗∗,V∗∗T is
a set of three vertices of triangle T and V∗∗ =

⋃
T∈M∗∗

V∗∗T . The set of interior vertices

is denoted by V∗∗int = P ∪ P∗. Moreover, the functions pK and pK∗ with K ∈ M,
K∗ ∈M∗ are piecewise linear continuous functions defined by

pK(x) =





1 at x = xK , xK ∈ P,
0 at x ∈ V∗∗int \ {xK} ,
0 on ∂Ω.

pK∗(x) =





1 at x = xK∗ , xK∗ ∈ P∗,
0 at x ∈ V∗∗int \ {xK∗} ,
0 on ∂Ω.

Additionally, we introduce some notations n[xA,xB ], n[xA,xC ], n[xB ,xC ] which are out-
ward normal vectors of the triangle (xA, xB, xC). The lengths of these vectors are
equal to the segments [xA, xB], [xA, xC ], [xB, xC ] and m(xA,xB ,xC) is the measure of
the triangle (xA, xB, xC).

x

xC

n
A

n
A

n
B C

x

[x   , x    ]

[x  , x    ]C

B[x  , x  ]

B
A

3 Presentation of the scheme

Now, we introduce our scheme: A Cell-Centered Scheme For Heterogeneous Anisotropic
Diffusion Problems On General Meshes. We name it FECC for the Finite Element
Cell-Centered scheme.

Definition 3.1: Let us define the discrete function space HD as the set of all
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((uK)K∈M, (uK∗)K∗∈M∗), uK ∈ R, K ∈ M, uK∗ ∈ R, K∗ ∈ M∗ and uK∗ = 0 if
xK∗ belongs to the boundary of Ω.

P (v) which is a function on Ω, is constructed from the value v = ((vK)K∈M, (vK∗)K∗∈M∗).
The function ∇D,Λu is intended to be a discrete gradient of ∇u taking into account
u = ((uK)K∈M, (uK∗)K∗∈M∗). As a result, equation (2) is discretized by the follow-
ing discrete variational formulation

∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫

Ω

f(x)P (v)(x)dx for all v ∈ HD. (3)

From equation (3), we describe the FECC scheme in each of the following cases of
Λ.

3.1 Isotropic homogeneous case: Λ = Id

The main idea of the FECC scheme is the same as that of the standard finite element
method (P1) on the third triangular mesh. The domain Ω is partitioned by this third
mesh.
For any u = ((uK)K∈M, (uK∗)K∗∈M∗) ∈ HD, P (u) is defined by

P (u)(x) =
∑

K∈M
uK .pK(x) +

∑

K∗∈M∗
uK∗ .pK∗(x), (4)

and ∇D,Λu is defined by

∇D,Idu(x) = ∇D,IdP (u)(x) =
∑

K∈M
uK∇pK(x) +

∑

K∗∈M∗
uK∗∇pK∗(x). (5)

Substituting definitions (4) and (5) into equation (3), for each L ∈ M ∪M∗, we
choose v = ((vK)K∈M, (vK∗)K∗∈M∗) ∈ HD such that vK = 0 if K 6= L, vK∗ = 0 if
K∗ 6= L, vL = 1 and P (v) = pL. The resulting equation can be re-written in the
following form:

∫

Ω

( ∑

K∈M
uK∇pK +

∑

K∗∈M∗
uK∗∇pK∗

)
.∇pL dx =

∫

Ω

f.pL dx. (6)

We present the construction of the FECC scheme in an isotropic homogeneous case.
Step 1 Recover all uK∗ with K∗ ∈ M∗ by linear functions of (uK)K∈M and con-
stants depending on function f .
We choose pL equal to pK∗ . We have

∫

Ω

(( ∑

K∈M
uK∇pK

)
.∇pK∗ + uK∗∇pK∗ .∇pK∗

)
dx =

∫

Ω

f.pK∗ dx,

because supp{pK∗} is a subset of K∗ for all K∗ ∈M∗.
Thus, uK∗ is equal to ΠK∗

(
{uK}K∈M , f

)
defined by

ΠK∗
(
{uK}K∈M , f

)
= −

∑

K∈M
uK

∫

Ω

∇pK(x)
∇pK∗(x)

‖∇pK∗‖2L2(Ω)

dx+

∫

Ω

f(x)
pK∗(x)

‖∇pK∗‖2L2(Ω)

dx.

International Journal on Finite Volumes 7
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Step 2 Transform the variables in formula (4).

P (u)(x) =
∑

K∈M
uK .pK(x) +

∑

K∗∈M∗
ΠK∗

(
{uK}K∈M , f

)
.pK∗(x). (7)

Step 3 Construct a system of linear equations.
Substituting (7) into (6), for each pL belonging to {pK}K∈M, we get:

∫

Ω

( ∑

K∈M
uK (∇pK .∇pL) +

∑

K∗∈M∗
ΠK∗

(
{uK}K∈P , f

)
(∇pK∗ .∇pL)

)
dx =

∫

Ω

f.pL dx.

(8)
This is a linear equation which only involves the cell unknowns {uK}K∈M. Hence,
we construct a system of linear equations

A.U = B, (9)

where U is a vector (uK)K∈M and A is a square matrix in Rcard(M)×card(M). All
unknowns (uK∗)K∗∈P∗ have been eliminated, the scheme is thus indeed cell-centered.

Lemma 3.1: In isotropic homogeneous cases, the matrix A of system (9) is sym-
metric and positive definite on general meshes. Moreover, the scheme is convergent.

Proof of lemma 3.1:
The matrix A is proved to be symmetric and positive definite as lemma 3.2, and the
scheme is equivalent to the standard finite element method on the third grid when
we consider the isotropic homogeneous case. Therefore, it is convergent (see details
of the proof in 2.4 and chapter 3 of [9]).

3.2 Anisotropic heterogeneous case

To simplify the description of the FECC scheme, we assume that, for neighboring
control volumes, the line joining their primary mesh points intersects their common
edge. Hence, the dual mesh is centered around the vertices of the primary mesh
and the dual mesh points are the vertices of the primary mesh. Taking any σ ∈
Eint such thatMσ = {K,L}, xK , xL ∈ P and xK∗ ∈ P∗, we denote by (xK , xL, xK∗)
a triangle of M∗∗. We take the values uK∗ , uK , uL of u at xK∗ , xK , xL.

n[x    , x   ]σ K

n
σ K

n[x    , x   ]σ L

n
σ

K L

n
K[x    , x   ]K n

LK
*

x

x x x

x

K

K K

σ L

**

σx

*[x    , x   ]

xK
xL

xK*

Figure 3.1

xσ

*[x    , x    ] K*[x   , x    ]

Figure 3.1
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From values uK∗ , uK , uL, we want to construct a discrete gradient ∇D,Λu on the
triangle (xK∗ , xK , xL) taking into account the heterogeneity of Λ. We consider the
function

P(K∗,K,L)(u) : (xK∗ , xK , xL)→ R,

where it is continuous, linear on (xK∗ , xK , xσ) and (xK∗ , xL, xσ) (two half triangles
of (xK , xL, xK∗)). We introduce a value uK

∗
σ (a temporary unknown) at xσ. The

point xσ is an intersecting point between the line joining two mesh points xK , xL
and the internal edge σ. The discrete gradient ∇D,Λu is then defined by

• on the triangle (xK∗ , xK , xσ)

P(K∗,K,L)(u)(x) =





uK x = xK ,
uK∗ x = xK∗ ,
uK
∗

σ x = xσ.

∇D,Λu = ∇D,ΛP(K∗,K,L)(u)

=
−P(K∗,K,L)(u)(xσ)n[xK∗ ,xK ] − P(K∗,K,L)(u)(xK)nK[xσ ,xK∗ ] − P(K∗,K,L)(u)(xK∗)n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)

=
−uK∗σ n[xK∗ ,xK ] − uKnK[xσ ,xK∗ ] − uK∗n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)
,

where nK[xσ ,xK∗ ] is the outer normal vector to the triangle (xK∗ , xK , xσ). The

length of the vector nK[xσ ,xK∗ ] is equal to the length of the segment [xσ, xK∗ ].

If xσ belongs to the boundary of Ω then uK
∗

σ = 0.

• on the triangle (xK∗ , xL, xσ)

P(K∗,K,L)(u)(x) =





uL x = xK ,
uK∗ x = xK∗ ,
uK
∗

σ x = xσ.

∇D,Λu = ∇D,ΛP(K∗,K,L)(u)

=
−P(K∗,K,L)(u)(xσ)n[xK∗ ,xL] − P(K∗,K,L)(u)(xL)nL[xσ ,xK∗ ] − P(K∗,K,L)(u)(xK∗)n[xσ ,xL]

2m(xK∗ ,xL,xσ)

=
−uK∗σ n[xK∗ ,xL] − uLnL[xσ ,xK∗ ] − uK∗n[xσ ,xL]

2m(xK∗ ,xL,xσ)
,

where nL[xσ ,xK∗ ] is the outer normal vector to the triangle (xK∗ , xL, xσ). The

length of the vector nL[xσ ,xK∗ ] is equal to the length of segment [xσ, xK∗ ]. If xσ

belongs to boundary of Ω then uK
∗

σ = 0.

These definitions depend on uK
∗

σ but we fix uK
∗

σ by imposing the Local Conserva-
tivity of the Fluxes, i.e

ΛK (∇D,Λu)|(xK∗ ,xK ,xσ) .n
K
[xσ ,xK∗ ] + ΛL (∇D,Λu)|(xK∗ ,xL,xσ) .n

L
[xσ ,xK∗ ] = 0, (10)

International Journal on Finite Volumes 9
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where ΛK , ΛL are values of Λ on K and L.
Equation (10) corresponds to the following equation:

uK
∗

σ = βK
∗,σ

K uK + βK
∗,σ

L uL + βK
∗,σ

K∗ uK∗ , (11)

with

βK
∗,σ

K =

(
(nK[xσ ,xK∗ ])

TΛKn
K
[xσ ,xK∗ ]

2m(xK∗ ,xK,xσ)

)/(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
,

βK
∗,σ

L =

(
(nL[xσ ,xK∗ ])

TΛLn
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

)/(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
,

βK
∗,σ

K∗ = 1− βK∗,σK − βK∗,σL .

From equation (11), the unknown uK
∗

σ is computed using uK , uK∗ and uL. Thus,
the discrete gradient ∇D,Λu on (xK , xL, xK∗) only depends on these three values.

Hypothesis 3.1: we assume

(
−

(nK[xσ ,xK∗ ])
TΛKn[xK∗ ,xK ]

2m(xK∗ ,xK,xσ)
−

(nL[xσ ,xK∗ ])
TΛLn[xK∗ ,xL]

2m(xK∗ ,xL,xσ)

)
6= 0.

Remark 3.2:

• In isotropic heterogeneous cases, if the primary mesh is an admissible mesh
(see definition 3.1, paper 37− 39 in [17]), the unknown uK

∗
σ is computed by

uK
∗

σ = βK
∗,σ

K︸ ︷︷ ︸
>0

uK + βK
∗,σ

L︸ ︷︷ ︸
>0

uL,

because nK[xσ ,xK∗ ]. n[xσ ,xK ] = 0 and nL[xσ ,xK∗ ]. n[xσ ,xL] = 0.

• In isotropic homogeneous cases, we do not need hypothesis 3.1, since the co-
efficients are different from 0.

We present the construction of the FECC scheme in anisotropic heterogeneous cases.
Step 1 Recover all uK∗ with K∗ ∈ M∗ by linear functions of (uK)K∈M and con-
stants depending on function f .
For each K∗ ∈M∗, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) such that vL = 0 for all
L ∈M, vL∗ = 0 if L∗ 6= K∗ and vK∗ = 1 in equation (3)

∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫

Ω

f(x)P (v)(x)dx.

The discrete gradient ∇D,Λv is equal to 0 on L∗ which is different from K∗. It
implies that

∫
Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx is presented by the linear function of

(uK)K∈M, uK∗ and a constant depending on function f . Therefore, the unknown

International Journal on Finite Volumes 10
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uK∗ is computed by a linear function of {uK}K∈M and a constant depending on
function f . This linear function is also denoted by ΠK∗

(
{uK}K∈M , f

)
.

Step 2 Reconstruct the discrete gradient ∇D,Λu.
In the definition of the discrete gradient ∇D,Λu, we transform all the unknowns
{uK∗}K∗∈M∗ by

{
ΠK∗

(
{uK}K∈M , f

)}
K∗∈M∗ . Hence, ∇D,Λu does not depend on

unknowns {uK∗}K∗∈M∗ .

Step 3 Construct a system of linear equations.
In equation (3), for each K ∈ M, we choose v = ({vL}L∈M, {vL∗}L∗∈M∗) ∈ HD
such that vL∗ = 0 for all L∗ ∈ M∗, vL = 0 if L 6= K and vK = 1. This resulting
equation is a linear equation which only involves unknowns {uK}K∈M. Thus, we
construct a system of linear equations

A.U = B, (12)

where U is the vector (uK)K∈M and A is a square matrix in Rcard(M)×card(M).

Lemma 3.2: With hypothesis (3.1), for anisotropic heterogeneous cases, the matrix
A of system (12) is symmetric and positive definite on general meshes.

Proof of lemma 3.2:
By definition, the discrete gradient ∇D,Λu depends on elements of sets {uK}K∈M,
{uK∗}K∗∈M∗ and

{
uK
∗

σ

}
σ∈Eint
K∗∈M∗σ

. The set
{
uK
∗

σ

}
σ∈Eint
K∗∈M∗σ

is only considered in anisotropic

heterogeneous cases. Hence, we can present

∫

Ω

(Λ∇D,Λu) .∇D,Λvdx = UTAΛV,

where U , V are defined by

U =




(uK∗)K∗∈M∗
(uK)K∈M(
uK
∗

σ

)
σ∈Eint
K∗∈M∗σ


 , V =




(vK∗)K∗∈M∗
(vK)K∈M(
vK
∗

σ

)
σ∈Eint
K∗∈M∗σ


 ,

M∗σ = {K∗ ∈M∗ such that σ ∩K∗ 6= ∅} ,
with

(uK)K∈M , (vK)K∈M ∈ M card(M)×1,

(uK∗)K∗∈M∗ , (vK∗)K∗∈M∗ ∈ M card(M∗)×1,

(
uK
∗

σ

)
σ∈Eint
K∗∈M∗σ

,
(
vK
∗

σ

)
σ∈Eint
K∗∈M∗σ

∈ M

(
P

σ∈Eint

card(M∗σ)

)
×1

.
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Defining m = card(M)+card(M∗)+ ∑
σ∈Eint

card(M∗σ) and n = card(M)+card(M∗),
we obtain

AΛ = ((aΛ)ij)i,j∈1,m and U ,V ∈Mm×1.

Moreover, AΛ is symmetric. This is deduced from
∫
Ω

(Λ∇D,Λu) .∇D,Λvdx =
∫
Ω

∇D,Λu. (Λ∇D,Λv) dx,

because the tensor Λ is symmetric.
In anisotropic heterogeneous cases, the discrete gradient ∇D,Λu can be re-written
by

• on the triangle (xK∗ , xK , xσ)

∇D,Λu = −



(
βK
∗,σ

K n[xK∗ ,xK ] + nK[xσ ,xK∗ ]

)
uK +

(
βK
∗,σ

L n[xK∗ ,xK ]

)
uL

+
(
βK
∗,σ

K∗ n[xK∗ ,xK ] + n[xσ ,xK ]

)
uK∗




2m(xK∗ ,xK ,xσ)
, (13)

• on the triangle (xK∗ , xL, xσ)

∇D,Λu = −



(
βK
∗,σ

K n[xK∗ ,xL]

)
uK +

(
βK
∗,σ

L n[xK∗ ,xL] + nL[xσ ,xK∗ ]

)
uL

+
(
βK
∗,σ

K∗ n[xK∗ ,xL] + n[xσ ,xL]

)
uK∗




2m(xK∗ ,xL,xσ)
, (14)

because uK
∗

σ = βK
∗,σ

K uK + βK
∗,σ

L uL + βK
∗,σ

K∗ uK∗ .

Now, the discrete gradient∇D,Λu depends on elements of set
{

(uK)K∈M , (uK∗)K∗∈M∗
}

in general cases. Therefore, there exists a matrix C∗ ∈Mm×n such that U = C∗U∗
with U 6= 0, which implies

UTAΛU = (U∗)T
(
C∗TAΛC

∗
)
U∗,

where C∗ ∈ Mm×n and U∗ =

(
(uK∗)K∗∈M∗
(uK)K∈M

)
∈ Mn×1. As the matrix AΛ is

symmetric, the matrix G = C∗TAΛC
∗ is also symmetric.

According to step 1 of the construction scheme, for each K∗ ∈ M∗, we choose
v = ({vL}L∈M, {vL∗}L∗∈M∗) such that vL = 0 for all L ∈ M, vL∗ = 0 if L∗ 6= K∗

and vK∗ = 1 in equation (3)

∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫

Ω

f(x)P (v)(x)dx.

From these linear equations, the first system of linear equations is constructed by

DU∗ + EU = F ∗, (15)

where F ∗ ∈M card(M∗)×1, D ∈M card(M∗)×card(M∗) and E ∈M card(M∗)×card(M).
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According to step 3 of the construction scheme, for each K ∈ M, we choose
v = ({vL}L∈M, {vL∗}L∗∈M∗) ∈ HD such that vL∗ = 0 for all L∗ ∈ M∗, vL = 0
if L 6= K and vK = 1 in equation (3). We get the second system of linear equations,
as follows:

MU∗ +NU = F, (16)

where F ∈M card(M)×1, N ∈M card(M)×card(M) and M ∈M card(M)×card(M∗). Both
F and F ∗ depend on function f .

From (15) and (16), it follows that G =

(
D E
M N

)
where M = ET and two square

matrices D, N are symmetric, because the matrix G is symmetric.

Next, we prove that the matrix G is positive definite. Assume that U ∗ 6= 0, there
are two following cases:
In the first case where uK 6= 0 for all K ∈ M, we consider T0 = (xK∗ , xσ1 , xK) ∈
M∗∗. This triangle has an edge belonging to the boundary of Ω presented in the
following figure:

x

x

x

x

σ

σ L

K

K∗x

1xσ

2

3

(1) (2)

(3)
(4)

Ω

            Figure 3.2

On the triangle T0 = (xK∗ , xσ1 , xK), the discrete gradient ∇D,Λu is defined by

∇D,Λu =
−uKn[xK∗ ,xσ1 ]

2m(xK∗ ,xσ1 ,xK)
,

because uK∗ = uK
∗

σ1
= 0.

All eigenvalues of tensor Λ are equal or greater than λ > 0, thus

U∗TGU∗ =

∫

Ω

(Λ∇D,Λu) .∇D,Λudx ≥ λ

∫

Ω

(∇D,Λu)2 dx

≥ λ

∫

T0

(∇D,Λu)2 dx = λ

(
uKn[xK∗ ,xσ1 ]

)2

4m(xK∗ ,xσ1 ,xK)
> 0.

In the second case, there exists K ∈ M such that uK = 0. In this case, we have a
triangle T0 = (xK∗ , xK , xL) such that uL 6= 0 or uK∗ 6= 0 (see figure 3.1).
The integral

∫
T0

(∇D,Λu)2 dx is computed by

∫

T0

(∇D,Λu)2 dx =

∫

(xK∗ ,xσ ,xK)

(∇D,Λu)2 dx+

∫

(xK∗ ,xσ ,xL)

(∇D,Λu)2 dx.
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On the triangle (xK∗ , xσ, xK), the discrete gradient ∇D,Λu is defined by

∇D,Λu =
−uK∗

(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
− uLβK

∗,σ
L n[xK ,xK∗ ]

2m(xK∗ ,xσ ,xK)
.

It follows that

∫

(xK∗ ,xσ ,xK)

(∇D,Λu)2 dx =

{
uK∗

(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
+ uLβ

K∗,σ
L n[xK ,xK∗ ]

}2

4m(xK∗ ,xσ ,xK)
> 0,

since the direction of the vector
(
n[xK ,xσ ] + βK

∗,σ
K∗ n[xK ,xK∗ ]

)
is different from direc-

tion of the vector n[xK ,xK∗ ], β
K∗,σ
L 6= 0 (use hypothesis 3.1) and

[
uL 6= 0,
uK∗ 6= 0.

Similarly to the first case, we get

U∗TGU∗ =

∫

Ω

(Λ∇D,Λu) .∇D,Λudx ≥ λ
∫

Ω

(∇D,Λu)2 dx ≥ λ
∫

T0

(∇D,Λu)2 dx > 0.

Therefore, the matrix G is positive definite.

From (15), U∗ is computed by U∗ = D−1 (F ∗ − EU). In this formula, the ma-
trix D−1 exists, because we apply the property of Schur complement of D in G (see
more theorem 1.20, paper 44 in [33]) and G is symmetric, positive definite. Thus,
(16) is transformed as follows:

(
N − ETD−1E

)
︸ ︷︷ ︸

=A

U = F −ETD−1F ∗︸ ︷︷ ︸
=B

,

where the matrices A, B are defined in the systems of linear equations (9) and (12).
Since G, D are symmetric, positive definite and using the property of Schur com-
plement in G (see more theorem 1.12, paper 34 in [33]), we conclude that A is
symmetric, positive definite. This allows us to use efficient methods to solve the
systems of linear equations (9) and (12). �

4 Properties of the scheme

4.1 Isotropic homogeneous case

Property 4.1.1: The stencil of the FECC scheme is equal to 9 on quadrangular
meshes.
Proof of property 4.1.1:
If the dual grid and the third grid are described by figure 4.1, then the stencil is
equal to 9.
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     Figure 4.1

3Kx

K8

Step 1
The intersecting domains are not empty between supp{pK1} and each of the following
domains: supp{pK2}, supp{pK4}, supp{pK6}, supp{pK8}, supp{pK∗1 }, supp{pK∗2 },
supp{pK∗

3
}, supp{p∗K4

}, and are empty between supp{pK1} and the others: supp{pK3},
supp{pK5}, supp{pK7}, supp{pK9}. Therefore, equation (6) can be written as

∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK6∇pK6 + uK8∇pK8

+uK∗
1
∇pK∗

1
+ uK∗2∇pK∗2 + uK∗

3
∇pK∗3 + uK∗4∇pK∗4

)
.∇pK1dx =

∫

Ω

f.pK1 dx.

Step 2

uK∗
1

= α
K∗

1
1 uK1 + α

K∗
1

2 uK2 + α
K∗

1
3 uK3 + α

K∗
1

4 uK4 + αK∗1 (f).

uK∗
2

= α
K∗2
1 uK1 + α

K∗2
4 uK4 + α

K∗2
5 uK5 + α

K∗
2

6 uK6 + αK∗2 (f).

uK∗3 = α
K∗3
1 uK1 + α

K∗3
6 uK6 + α

K∗3
7 uK7 + α

K∗
3

8 uK8 + αK∗3 (f).

uK∗4 = α
K∗4
1 uK1 + α

K∗4
2 uK2 + α

K∗4
8 uK8 + α

K∗
4

9 uK9 + αK∗4 (f).

Step 3

∫

Ω




uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK6∇pK6 + uK8∇pK8

+
(
α
K∗

1
1 uK1 + α

K∗
1

2 uK2 + α
K∗

1
3 uK3 + α

K∗
1

4 uK4

)
∇pK∗

1

+
(
α
K∗2
1 uK1 + α

K∗2
4 uK4 + α

K∗2
5 uK5 + α

K∗
2

6 uK6

)
∇pK∗2

+
(
α
K∗3
1 uK1 + α

K∗3
6 uK6 + α

K∗3
7 uK7 + α

K∗
3

8 uK8

)
∇pK∗3

+
(
α
K∗4
1 uK1 + α

K∗4
2 uK2 + α

K∗4
8 uK8 + α

K∗
4

9 uK9

)
∇pK∗4




.∇pK1dx =

∫

Ω

{
f.pK1 −

[
αK∗1 (f)∇pK∗1 − αK∗2 (f)∇pK∗2 − αK∗3 (f)∇pK∗3 − αK∗4 (f)∇pK∗4

]
.∇pK1

}
dx.

This equation only depends on nine cell unknowns, so the stencil is equal to nine. �

Remark 4.1: In some particular cases, the stencil can be 7 or even 5. We show the
two following examples for these cases:
a) If the dual grid and the third grid are described by figure 4.2, then the stencil is
equal to 7.
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   Figure 4.2

In figure 4.2, the polygon (xK2 , xK4 , xK5 , xK6 , xK8 , xK9) is an element of the dual
grid where the points xK∗ and xK1 are the same.
The intersecting domains are not empty between supp{pK1} and each of the following
domains: supp{pK2}, supp{pK4}, supp{pK5}, supp{pK6}, supp{pK8}, supp{pK9},
and are empty between supp{pK1} and the others: supp{pK3}, supp{pK7}. Hence,
equation (6) can be written as:

∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK5∇pK5

+uK6∇pK6 + uK8∇pK8 + uK9∇pK9

)
.∇pK1dx =

∫

Ω

f.pK1 dx.

There are only seven main unknowns in the equation of step 1, thus the stencil is
equal to seven.

b) We consider a particular case with a primary grid of squares. The dual grid
is constructed on the following figure:

1Kx
2

xK

3KxxK45
xK

6
xK

7K K8
x Kx

9
x

In the above figure, the polygon (xK2 , xK4 , xK5 , xK6 , xK8 , xK9) is an element of the
dual mesh where the point xK∗ and xK1 are the same.
The intersecting domains are not empty between supp{pK1} and each of the following
domains: supp{pK2}, supp{pK4}, supp{pK5}, supp{pK6}, supp{pK8}, supp{pK9},
and are empty between supp{pK1} and the others: supp{pK3}, supp{pK7}. Hence,

International Journal on Finite Volumes 16



A cell-centered scheme for diffusion problems

equation (6) can be written as:
∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4 + uK5∇pK5

+uK6∇pK6 + uK8∇pK8 + uK9∇pK9

)
.∇pK1dx =

∫

Ω

f.pK1 dx.

Moreover, we have that:

• on the triangle (xK1 , xK4 , xK5)

∇pK5 . ∇pK1 =
n[xK1

,xK4
]. n[xK4

,xK5
]

(
2m(xK1

,xK4
,xK5)

)2 = 0,

because n[xK1
,xK4

]. n[xK4
,xK5

] is equal to 0,

• on the triangle (xK1 , xK5 , xK6)

∇pK5 . ∇pK1 =
n[xK1

,xK6
]. n[xK5

,xK6
]

(
2m(xK1

,xK5
,xK6)

)2 = 0,

because n[xK1
,xK6

]. n[xK5
,xK6

] is equal to 0,

• on the triangle (xK1 , xK2 , xK9)

∇pK9 .∇pK1 =
n[xK1

,xK2
]. n[xK2

,xK9
]

(
2m(xK1

,xK2
,xK9)

)2 = 0,

because n[xK1
,xK2

]. n[xK2
,xK9

] is equal to 0 ,

• on the triangle (xK1 , xK8 , xK9)

∇pK9 .∇pK1 =
n[xK1

,xK8
]. n[xK8

,xK9
]

(
2m(xK1

,xK8
,xK9)

)2 = 0,

because n[xK1
,xK8

]. n[xK8
,xK9

] is equal to 0 .

Hence, we get
∫

Ω

(
uK1∇pK1 + uK2∇pK2 + uK4∇pK4

+uK6∇pK6 + uK8∇pK8

)
.∇pK1dx =

∫

Ω

f.pK1 dx,

which implies that the stencil is equal to 5. �

We point out the next property of the FECC scheme.
According to the construction in isotropic cases, the affine function u on (xK∗ , xK , xL)
is also affine on (xK∗ , xK , xσ) and (xK∗ , xL, xσ). In addition, this function has con-
tinuous fluxes because Λ is continuous. Therefore, it corresponds to the function u
constructed in the heterogeneous cases, as follows:

(∇D,Idu)|(xK∗ ,xK ,xσ) =
−uK∗σ n[xK∗ ,xK ] − uKnK[xσ ,xK∗ ] − uK∗n[xσ ,xK ]

2m(xK∗ ,xK ,xσ)
,

(∇D,Idu)|(xK∗ ,xL,xσ) =
−uK∗σ n[xK∗ ,xL] − uLnL[xσ ,xK∗ ] − uK∗n[xσ ,xL]

2m(xK∗ ,xL,xσ)
,
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where uK
∗

σ is a temporary unknown. This unknown is eliminated by imposing the
continuity of the fluxes:

(∇D,Λu)|(xK∗ ,xK ,xσ) .n
K
[xσ ,xK∗ ] + (∇D,Λu)|(xK∗ ,xL,xσ) .n

L
[xσ ,xK∗ ] = 0.

(
αKσ + αLσ

)
uK
∗

σ = αKuK + αLuL +
(
αKK∗ + αLK∗

)
uK∗ , (17)

where

αK = −
nK[xσ ,xK∗ ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
, αKK∗ = −

n[xσ ,xK ]. n
K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
, αKσ =

n[xK∗ ,xK ]. n
K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
,

αL = −
nL[xσ ,xK∗ ]. n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
, αLK∗ = −

n[xσ ,xL]. n
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
, αLσ =

n[xK∗ ,xL]. n
L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)
.

The following property presents a formula to compute the unknown uσ in terms of
the unknowns uK , uL.

Property 4.1.2: The unknown uK
∗

σ of (17) satisfies

uK
∗

σ =
dL,σ

dK,σ + dL,σ
uK +

dK,σ
dK,σ + dL,σ

uL, (18)

which is the value obtained by the scheme described in [3] using the harmonic aver-
aging points.
In (18), dK,σ, dL,σ are greater than 0 and denote the measures of the segments
[xK , xK,σ], [xL, xL,σ], respectively. Two points xK,σ, xL,σ are the two orthogonal
projection points of xK and xL onto σ.

Proof of property 4.1.2:

x

x

K

K *

xL

xσ

ϕ ϕ

ϕ

ϕK, K

K,Kϕ

K,K

ϕ

*
* *

*

**
1

1

2
3

2

3

L,K

L,K

L,K

We present in detail the calculation of the coefficients of equation (17).
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a) Calculation of the coefficient uK∗ :

αKK∗ + αLK∗ = −
n[xσ ,xK ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
−
n[xσ ,xL].n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

=
m[xσ ,xK ]. mσ cos

(
ϕK,K

∗
2

)

m[xσ ,xK ]. mσ sin
(
ϕK,K

∗
2

) +
m[xσ ,xL]. mσ cos

(
ϕL,K

∗
2

)

m[xσ ,xL]. mσ sin
(
ϕL,K

∗
2

)

=
cos
(
ϕK,K

∗
2

)

sin
(
ϕK,K

∗
2

) +
cos
(
ϕL,K

∗
2

)

sin
(
ϕL,K

∗
2

)

=
cos
(

Π− ϕL,K∗2

)

sin
(

Π− ϕL,K∗2

) +
cos
(
ϕL,K

∗
2

)

sin
(
ϕL,K

∗
2

) = 0.

In the following figure, xK,σ, xL,σ are the two orthogonal projection points of xK ,
xL on σ.

x

x

K

K *

xL

xK, σ
xσ

x  σL,

σ

b) Calculation of the coefficient uσ:

αKσ + αLσ =
n[xK∗ ,xK ]. n

K
[xσ ,xK∗ ]

2m(xK∗ ,xK ,xσ)
+
n[xK∗ ,xL].n

L
[xσ ,xK∗ ]

2m(xK∗ ,xL,xσ)

=
m[xK∗ ,xK ]. mσ. cos

(
ϕK,K

∗
1

)

mσ. dK,σ
+
m[xK∗ ,xL].mσ. cos

(
ϕL,K

∗
1

)

mσ. dL,σ

= −
m[xK∗ ,xK,σ ]

dK,σ
−
m[xK∗ ,xL,σ ]

dL,σ

=
mσ. (dK,σ + dL,σ)−m[xK,σ ,xσ ].dK,σ +m[xL,σ ,xσ ].dL,σ

dK,σ.dL,σ

= −mσ (dK,σ + dL,σ)

dK,σ dL,σ
,

because m[xK∗ ,xK,σ ] = m[xK∗ ,xσ ] − m[xK,σ ,xσ ],m[xK∗ ,xL,σ ] = m[xK∗ ,xσ ] + m[xL,σ ,xσ ],
m[xK,σ ,xσ ]. dL,σ = m[xL,σ ,xσ ]. dK,σ.

c) Calculation of the coefficient uK :

αK = −

(
nK[xσ ,xK∗ ]

)2

2m(xK∗ ,xK ,xσ)
= − (mσ)2

mσ. dK,σ
= − mσ

dK,σ
.
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d) Calculation of the coefficient uL:

αL = −

(
nL[xσ ,xK∗ ]

)2

2m(xK∗ ,xL,xσ)
= − (mσ)2

mσdL,σ
= − mσ

dL,σ
.

From the above calculations, we get:

(
−mσ (dK,σ + dL,σ)

dK,σ dL,σ

)
uK
∗

σ = − mσ

dK,σ
uK −

mσ

dL,σ
uL.

uK
∗

σ =
dL,σ

dK,σ + dL,σ
uK +

dK,σ
dK,σ + dL,σ

uL. �

Remark 4.2: In heterogeneous strongly anisotropic cases, the harmonic averaging
point in [3] does not provide an ”acceptable” interpolation uσ. Even in this case, in
Test 5 (see numerical results), we show that the FECC scheme can obtain precise
results.
Remark 4.3: In property 4.1.2, we show a relationship between the FECC scheme
and the scheme introduced in [3]. However, even in isotropic homogeneous cases,
there is a difference between these two schemes.
For a grid of squares (the length of each edge is equal to a), we consider two control
volumes Ki,j (mesh point xi,j) and Ki+1,j (mesh point xi+1,j) of the primary grid
such that their edges do not belong to the boundary ∂Ω. The third grid is defined
in the following figure (dashed red and black lines):

x x x

x

i−1,j+1x x i,j+1 i+1,j+1

i,j

i−1,j−1 i,j−1 i+1,j−1

i−1,j
x

i+1,j
x

x

x x

i+2,j+1x

i+2,j
i+3,j

i+2,j−1
x

Using the scheme described in [3], for a given constant function f (6= 0), we get the
two following linear equations at xi,j and xi+1,j :

4ui,j − ui,j+1 − ui−1,j − ui+1,j − ui,j−1 =

∫

Ki,j

fdx = f.a2,

4ui+1,j − ui,j − ui+1,j+1 − ui+2,j − ui+1,j−1 =

∫

Ki+1,j

fdx = f.a2.
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Using the FECC scheme, we get the two following linear equations at xi,j and xi+1,j :

4ui,j − ui,j+1 − ui−1,j − ui+1,j − ui,j−1 =

∫

(xi,j+1;xi+1,j ;xi,j−1;xi−1,j)

f.pi,jdx =
2.f.a2

3
,

4ui+1,j − ui,j − ui+1,j+1 − ui+2,j − ui+1,j−1 =

∫

(xi,j+1;xi+2,j+1;xi+2,j−1;xi,j−1)

f.pi+1,jdx =
4.f.a2

3
.

At each point xi,j and xi+1,j , we observe that the right hand sides of the two linear
equations are different and that the left hand sides are the same.

5 Mathematical properties

We are interested in this section by the theoretical convergence of the FECC scheme
in the general case where the tensor Λ(x) can be discontinuous. We denote by
P1(v) the traditional P1 function on Ω, constructed on M ∗∗. We first show the
convergence of a variant of the original scheme, which we call FECCB, which satisfies
the following discrete variational formulation:

u ∈ HD
∫

Ω

(Λ(x)∇D,Λu(x)) .∇D,Λv(x) dx =

∫

Ω

f(x)P1(v)(x)dx for all v ∈ HD.

(19)

To simplify the presentation, we assume that, for neighboring control volumes, the
line joining their primary mesh points intersects their common edge. Let M∗∗

Λ =
{K ∈M∗∗ | Λ(x) is not continuous on K} andM∗∗Const = {K ∈M∗∗ | Λ(x) is constant on K}.
If ∀K ∈ M∗∗\M∗∗Const, let us assume that Λ(x) = Λ1 on K1 (K1 is the triangle
(xK , xσ, xK∗) and that Λ(x) = Λ2 on K2 (K2 is the triangle (xL, xσ, xK∗)) (see
Figure 5.1). For K ∈ M∗∗Λ , we only choose two discontinuities to simplify the pre-
sentation but the method can be generalized to a greater number of discontinuities.
We denote by hK the diameter of the triangleK and ρK = sup{diam(S) : S is a ball contained in K}.
As described in section 2, we recall that V∗∗K is the set of the vertices of the triangle
K ∈M∗∗. Moreover, the size of the discretization is defined by
hM∗∗ = sup{hK ,K ∈M∗∗}.
For all the triangular cells belonging toM∗∗, we join the centers of gravity of the tri-
angles xbar,K to the midpoints of the edges (xK,K∗ , xK,L, xK∗,L). The vectors ~τK,K∗ ,
~τK∗,L , ~τL,K are orthogonal vectors (with the same length) to the sides [xK,K∗ , xbar,K ],
[xK∗,L, xbar,K ], [xK,L, xbar,K ].
We denote by AiK , AiL and AiK∗ , the polygons (xK , xK,L, xbar,K , xK,K∗),
(xL, xK,L, xbar,K , xK∗,L) and (xK∗ , xK∗,L, xbar,K , xK,K∗). The vectors ~nK , ~nK∗ , ~nL,
~nσ, ~nK∗,1 and ~nK∗,2 are orthogonal vectors (with the same length) to the sides
[xK∗ , xL], [xK , xL], [xK∗ , xK ], [xK∗ , xσ], [xK , xσ] and [xσ, xL] (see figure 5.1).
We define Π0

D∗∗u which is a piecewise constant reconstruction by:
Π0
D∗∗u(x) = Π0

Ku = uK if x ∈ AiK , Π0
D∗∗u(x) = Π0

Lu = uL if x ∈ AiL and
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PSfrag replacements
xK∗

xL

xK

xK,K∗

xK,L

xK∗,L

xbar,K

~τL,K
~τK∗,L

~τK,K∗

~nK

~nK∗

~nL

xσ

~nσ

~nK∗,1

~nK∗,2

Figure 5.1

Π0
D∗∗u(x) = Π0

K∗u = uK∗ if x ∈ AiK∗ .

We define the discrete H1 norm of u by:

||u||21,D∗∗ =
∑

K∈M∗∗

|~τK,L|
d(K,L)

(uK−uL)2+
|~τK,K∗ |
d(K,K∗)

(uK−uK∗)2+
|~τL,K∗ |
d(L,K∗)

(uL−uK∗)2

where d(K,L) is the distance between xK and [xK,L, xbar,K ] (d(K,L) = d(L,K)),
d(K,K∗) is the distance between xK∗ and [xK,K∗ , xbar,K ] (d(K,K∗) = d(K∗,K))
and d(L,K∗) is the distance between xL and [xK∗,L, xbar,K ] (d(L,K∗) = d(K∗, L)).
Following the definition given in [18], we measure the strong consistency with the

interpolation error function S(ϕ) = {||P1(ϕ)− ϕ||2L2(Ω) + ||∇D,Λϕ−∇ϕ||2L2(Ω)2}
1
2 ,

ϕ ∈ [C∞c (Ω)] and the dual consistency with the conformity error function

WD∗∗(~ϕ) = maxu∈HD ||
1

∇D,Λu(x)
||
∫

Ω
(∇D,Λu(x).~ϕ+P1(u)(x)div~ϕ(x))dx,∀~ϕ ∈ [C∞c (Ω)]2.

Lemma 5.1: With hypothesis 3.1, let S be a sequence of discretizations D∗∗ =
(HD, hM∗∗ , P1(u),∇D,Λ) previously defined. We assume that there exists θ such that
for all D∗∗ ∈ S, for K ∈M∗∗\{M∗∗Λ ∪M∗∗Const},
min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)

|~nL|
|K1|
|K| > θ and

min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
|~nK |

|K2|
|K| > θ.

Then, for K ∈M∗∗\M∗∗Λ the gradient ∇D,Λu satisfies:
|K|∇D,Λu =
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(uK∗ − uK)(~τK,K∗ + ~εK,K∗) + (uL − uK∗)(~τK∗,L + ~εK∗,L) + (uK − uL)(~τL,K + ~εL,K)

with limhM∗∗→0
|~εK,K∗ |
|~τK,K∗ |

= 0, limhM∗∗→0
|~εK∗,L|
|~τK∗,L|

= 0 and limhM∗∗→0
|~εL,K |
|~τL,K |

= 0.

Proof
First case: Λ1 = Λ2.
Using the stokes formula, we obtain (see figure 5.1):

2|K|∇D,Λu = −uK∗~nK∗ − uL~nL − uK~nK
which becomes

|K|∇D,Λ =
1

6
{(uK∗−uK)(~nK−~nK∗)+(uK−uL)(~nL−~nK)+(uL−uK∗)(~nK∗−~nL)}.

As the vectors ~τL,K , ~τK,K∗ and ~τK∗,L satisfy ~τL,K =
1

6
(~nL − ~nK),

~τK,K∗ =
1

6
(~nK − ~nK∗), ~τK∗,L =

1

6
(−~nL + ~nK∗), we obtain:

|K|∇D,Λu = (uK∗ − uK)~τK,K∗ + (uL − uK∗)~τK∗,L + (uK − uL)~τL,K .

Second case: Λ1 6= Λ2.

For x ∈ K1, the gradient ∇D,Λu satisfies:

2|K1|∇D,Λu = −uK∗~nK∗,1 − uσ~nL − uK~nσ.

We can write uσ = βKuK + βLuL + βK∗uK∗ with βK + βL + βK∗ = 1,

limhM∗∗→0βK∗ = 0, limhM∗∗→0βK =
[xL, xσ]

[xL, xK ]
and limhM∗∗→0βL =

[xK , xσ]

[xL, xK ]
be-

cause, forK ∈M∗∗\{M∗∗Λ ∪M∗∗Const} (Λ(x) is continuous), limhM∗∗→0||Λ1−Λ2|| = 0.

The gradient becomes:

2|K1|∇D,Λu = −uK∗(~nK∗,1+εK∗~nL)−uL(
[xK , xσ]

[xL, xK ]
+εL)~nL−uK(~nσ+~nL(εK+

[xL, xσ]

[xL, xK ]
)).

with εK+εL+εK∗ = 0, limhM∗∗→0εK∗ = 0, limhM∗∗→0εK = 0 and limhM∗∗→0εL = 0.

As
(~nσ + [xL,xσ ]

[xL,xK ]~nL)

|K1|
=
~nK
|K| ,

[xK ,xσ ]
[xL,xK ]~nL

|K1|
=
~nL
|K| and

~nK∗,1
|K1|

=
~nK∗

|K| , we deduce:

2|K|∇D,Λu = −uK∗(~nK∗ +
|K|
|K1|

εK∗~nL)− uL(1 +
|K|
|K1|

εL)~nL − uK(~nK +
|K|
|K1|

εK~nL)

= −uK∗~pK∗ − uL~pL − uK~pK .
Finally, we obtain:

|K|∇D,Λu =
1

6
{(uK∗−uK)(~pK−~pK∗)+(uK−uL)(~pL−~pK)+(uL−uK∗)(~pK∗−~pL)}.

Using the assumption on the grid (
min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)

|~nL|
|K1|
|K| > θ), choosing

~εK,K∗ = − |K||K1|εK∗~nL + |K|
|K1|εK~nL, ~εK∗,L = |K|

|K1|εK∗~nL −
|K|
|K1|εL~nL,

International Journal on Finite Volumes 23



A cell-centered scheme for diffusion problems

~εL,K = |K|
|K1|εL~nL−

|K|
|K1|εK~nL and using the values of ~τL,K ,~τK,K∗ and ~τK∗,L, we obtain

the desired property for x ∈ K1.
For x ∈ K2, the computation of the gradient is similar.

�

Lemma 5.2: With hypothesis 3.1, let S be a sequence of discretization D∗∗ =
(HD, hM∗∗ , P1(u),∇D,Λ) previously defined. We assume that there exists θ, such
that for all D∗∗ ∈ S , for K ∈M∗∗Λ

• |~nσΛ2~nK
|K2|

− ~nσΛ1~nL
|K1|

| ≥ θ(~nσΛ1~nσ
|K1|

+
~nσΛ2~nσ
|K2|

), (H1)

• min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
max(|~nσ|, |~nK∗,1|, |~nK∗,2|)

> θ, (H2).

Then, there exists a constant C2 such that the gradients ∇K1u and ∇K2u satisfy:

|K1|∇K1u = (uK∗ − uK)~θ1(K,K∗) + (uL − uK∗)~θ1(K∗, L) + (uK − uL)~θ1(L,K)

and

|K2|∇K2u = (uK∗ − uK)~θ2(K,K∗) + (uL − uK∗)~θ2(K∗, L) + (uK − uL)~θ2(L,K).

with |~θ1(K,K∗)| ≤ C2

θ2
|~τK,K∗ |, |~θ1(K∗, L)| ≤ C2

θ2
|~τK∗,L|, |~θ1(L,K)| ≤ C2

θ2
|~τL,K |,

|~θ2(K,K∗)| ≤ C2

θ2
|~τK,K∗ |, |~θ2(K∗, L)| ≤ C2

θ2
|~τK∗,L| and |~θ2(L,K)| ≤ C2

θ2
|~τL,K | .

Remark 5.1: In order to satisfy assumption H1, it is sufficient to choose the primary
mesh points xK and xL close enough from xσ. In pratice, this is a light hypothesis.

Proof

Let us denote Det = −~nσΛ1~nL
|K1|

+
~nσΛ2~nK
|K2|

.

We can write:
uσ = βKuK + βLuL + βK∗uK∗ (20)

with βK + βL + βK∗ = 1 where βK =
~nσΛ1~nσ
Det|K1|

, βL =
~nσΛ2~nσ
Det|K2|

and

βK∗ = 1− βK − βL.

Using assumption H1, we obtain |Det| ≥ θ(~nσΛ1~nσ
|K1|

+
~nσΛ2~nσ
|K2|

). We deduce

|βK | ≤
1

θ
, |βL| ≤

1

θ
and βK∗ ≤

2

θ
+ 1. Using the formula:

2|K1|∇K1u = −(uK∗ − uσ)~nK∗,1 − (uK − uσ)~nσ,

2|K2|∇K2u = −(uK∗ − uσ)~nK∗,2 − (uL − uσ)~nσ

and equality (20), we obtain: ~θ1(K,K∗) = −βK
2
~nK∗,1 +

βK∗

2
~nσ,

~θ1(K∗, L) =
βL
2
~nK∗,1, ~θ1(L,K) = −βL

2
~nσ, ~θ2(K,K∗) = −βK

2
~nK∗,2,
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~θ2(K∗, L) =
βL
2
~nK∗,2 −

βK∗

2
~nσ and ~θ2(L,K) =

βL
2
~nσ.

We conclude using assumption H2. �

Proposition 5.3: With hypothesis 3.1, let S be a sequence of discretizations D∗∗ =
(HD, hM∗∗ , P1(u),∇D,Λ) previously defined. We assume that there exists θ, such
that for all D∗∗ ∈ S:

• ρK > θhK ∀K ∈M∗∗Const (H1),

• ρK1 > θhK1 ∀K ∈M∗∗\M∗∗Const (H2),

• ρK2 > θhK2 ∀K ∈M∗∗\M∗∗Const (H3),

• d(K,L) >
1

θ
|~τK,L|, d(K,K∗) >

1

θ
|~τK,K∗ |, d(L,K∗) >

1

θ
|~τL,K∗ |, ∀K ∈ M∗∗

(H4),

• |~nσΛ2~nK
|K2|

− ~nσΛ1~nL
|K1|

| ≥ θ(~nσΛ1~nσ
|K1|

+
~nσΛ2~nσ
|K2|

) for K ∈M∗∗Λ (H5),

• min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
max(|~nσ|, |~nK∗,1|, |~nK∗,2|)

> θ for K ∈M∗∗Λ (H6),

• min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
|~nL|

|K1|
|K| > θ and

min(|~τK,L|, |~τK,K∗ |, |~τK,K∗ |)
|~nK |

|K2|
|K| > θ for K ∈M∗∗\{M∗∗Λ ∪M∗∗Const} (H7).

Then, the FECCB scheme is coercive, that is to say there exists CD∗∗ such that

||P1(u)||L2(Ω) ≤ CD∗∗ ||∇D,Λu||, u ∈ HD.
Moreover ∀ϕ ∈ [C∞c (Ω)], limhM∗∗→0S(ϕ) = 0 and ∀~ϕ ∈ [C∞c (Ω)]2

limhM∗∗→0WD∗∗(~ϕ) = 0. With these three properties, we can apply the corollary 2.3
described in [18]. It means that the FECCB scheme is convergent, that is to say,
P1(u) converges to the exact solution uexa of the problem and ∇D,Λu tends to ∇uexa
as hM∗∗ → 0.

Proof

Following Lemma 5.3 in [16], there exists C3 only depending on θ (Poincaré in-
equality) such that:

||Π0
D∗∗u||2L2(Ω) ≤ C3||u||21,D∗∗ ,∀u ∈ HD.

Let us show that there exists C4 only depending on Ω and θ such that:

||u||21,D∗∗ ≤ C4||∇D,Λu(x)||2{L2(Ω)}2 . (21)
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The proof is close to the one described in [18] (lemma 3.1). We denote by ∇Ku the
value of ∇D,Λu(x) if K ∈ M∗∗Const, and ∇K1u (resp. ∇K2u ) the value of ∇D,Λu(x)
on K1 (resp. K2) if K ∈ M∗∗\M∗∗Const. For all K ∈ M∗∗Const, for all s ∈ V∗∗K and
r ∈ V∗∗K , we can write:

us − ur = ∇Ku.(s− r).
We obtain:

||∇Ku||2 ≥
1

3
(
(uK − uL)2

[xK , xL]2
+

(uK − uK∗)2

[xK , xK∗ ]2
+

(uL − uK∗)2

[xL, xK∗ ]2
)

and

|K|||∇Ku||2 ≥
1

3
((uK−uL)2 ρK

[xK , xL]
+(uK−uK∗)2 ρK

[xK , xK∗ ]
+(uL−uK∗)2 ρK

[xL, xK∗ ]
).

(22)

For K ∈M∗∗\M∗∗Const, we get:

||∇K1u||2 ≥
1

2
(
(uK − uσ)2

[xK , xσ]2
+

(uK − uK∗)2

[xK , xK∗ ]2
)

and

||∇K2u||2 ≥
1

2
(
(uL − uσ)2

[xσ, xL]2
+

(uL − uK∗)2

[xL, xK∗ ]2
).

We deduce that there exists C5 such that:

|K1|||∇K1u||2 + |K2|||∇K2u||2 ≥ C5{(min(
ρK1

[xK , xσ]
,

ρK2

[xL, xσ]
)(uK − uσ)2 + (uL − uσ)2)+

ρK1

[xK , xK∗ ]
(uK − uK∗)2 +

ρK2

[xL, xK∗ ]
(uL − uK∗)2}.

(23)

Using the inequality (uK − uσ)2 + (uL − uσ)2 ≥ 1

2
(uK − uL)2, we obtain that there

exists C21 such that:∑
K∈M∗∗\M∗∗Const |K1|||∇K1u||2 + |K2|||∇K2u||2 ≥

C21
∑

K∈M∗∗\M∗∗Constmin(
ρK1

[xK , xσ]
,

ρK2

[xL, xσ]
)(uK − uL)2 +

ρK1

[xK , xK∗ ]
(uK − uK∗)2 +

ρK2

[xL, xK∗ ]
(uL − uK∗)2.

Using assumptions H1, H2, H3 and inequality (22), there exists C23 such that:

||∇D,Λu(x)||2 ≥ C23

∑

K∈M∗∗
θ(uK − uL)2 + θ(uK − uK∗)2 + θ(uL − uK∗)2.

Using assumption H4, we get:

||∇D,Λu(x)||2 ≥ C23

∑

K∈M∗∗

|~τK,L|
d(K,L)

(uK−uL)2+
|~τK,K∗ |
d(K,K∗)

(uK−uK∗)2+
|~τL,K∗ |
d(L,K∗)

(uL−uK∗)2,
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which is the desired inequality.
Moreover, for K ∈M∗∗, we write:
if x ∈ AiK , P1(u)(x) = Π0

D∗∗u(x) +∇P1,K
u.(x− xK), if x ∈ AiL,

P1(u)(x) = Π0
D∗∗u(x) + ∇P1,L

u.(x − xL), if x ∈ AiK∗ , P1(u)(x) = Π0
D∗∗u(x) +

∇P1,K∗u.(x− xK∗). We obtain that

||P1(u)||L2(Ω) ≤ ||Π0
D∗∗u||L2(Ω) + hM∗∗ ||∇P1u(x)||{L2(Ω)}2 . (24)

With Lemma 5.1, we obtain the formulation:

|K|∇P1u = (uK−uK∗)~τK,K∗+(uK∗−uL)~τK∗,L+(uL−uK)~τL,K for x ∈ K, for K ∈M∗∗.

We define SK = ((K,L), (K,K∗), (K∗, L)). Using the Cauchy-Schwarz inequality
and

∑
K∈M∗∗

∑
(M,N)∈SK |~τM,N |d(M,N) = 2|Ω|, we get that there exists C20 such

that:
||∇P1u||{L2(Ω)}2 ≤ C20||u||1,D∗∗ . (25)

Using (21), (24) and (25), we obtain that there exists C22 such that:

||P1(u)||L2(Ω) ≤ C22||∇D,Λu(x)||{L2(Ω)}2 . (26)

We conclude that the scheme is coercive.

Let us estimate the strong consistency of the discretization. Let ϕ ∈ [C∞c (Ω)].
As we use the Stokes formula to approximate the gradient, with assumptions H1,
H2 and H3, we obtain in the same way as lemma 4.3 described in [16] that there
exists C6 only depending on θ and ϕ such that

||∇D,Λϕ−∇ϕ||L2(Ω)2 ≤ C6hM∗∗ .

Moreover, using Lemma 3.1 in [19], we obtain that ||P1(ϕ)−ϕ||L2(Ω) ≤ hM∗∗ ||∇ϕ||L2(Ω)2 .

We deduce that the interpolation error function S(ϕ) tends toward zero if hM∗∗ tends
toward zero.

Let ~ϕ ∈ [C∞c (Ω)]2. Let us compute T =
∫

Ω(∇D,Λu(x).~ϕ+ P1(u)div~ϕ(x))dx.
We denote by ~ϕK the average value of ~ϕ(x) if K ∈M∗∗\M∗∗Λ , ~ϕK1 (resp. ~ϕK2) the
average value of ~ϕ(x) on K1 (resp. K2) if K∗∗ ∈M∗∗Λ , ~ϕM,N(M,N)∈SK the average
value of ~ϕ(x) on ~τM,N,(M,N)∈SK .
We get T = T1 + T2 + T3 with
T1 =

∑
K∈M∗∗Const |K|∇Ku.~ϕK+

∑
K∈M∗∗\{M∗∗Const∪M∗∗Λ } |K1|∇K1u.~ϕK1+|K2|∇K2u.~ϕK∗∗2 +

∑
K∈M∗∗Λ |K1|∇K1u.~ϕK1 + |K2|∇K2u.~ϕK∗∗2 = T11 + T12 + T13 + T14 + T15,

T2 =
∑

K∈M∗∗
(uK −uK∗)~τK,K∗ .~ϕK,K∗+(uK∗−uL)~τK∗,L.~ϕK∗,L+(uL−uK)~τL,K .~ϕK,L,

T3 =
∑

K∈M∗∗
∫
AiK
∇P1,K

u.(x − xK)div~ϕ(x)dx +
∫
AiL
∇P1,L

u.(x − xL)div~ϕ(x)dx +
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∫
AiK∗

∇P1,K∗u.(x− xK∗)div~ϕ(x)dx.
We obtain:

|T3| ≤ h∗∗M||∇P1u||{L2(Ω)}2 ||div~ϕ||L2(Ω). (27)

With assumption H7 and Lemma 5.1, we get:

T11 + T12 + T13 =
∑

K∈M∗∗\M∗∗Λ {(uK∗ − uK)(~τK,K∗ + ~εK,K∗) +

(uL − uK∗)(~τK∗,L + ~εK∗,L) + (uK − uL)(~τL,K + ~εL,K)}.~ϕK .

On the other hand, with Lemma 5.2, we write:

T14 =
∑

K∈M∗∗Λ

((uK∗−uK)~θ1(K,K∗)+(uL−uK∗)~θ1(K∗, L)+(uK−uL)~θ1(L,K)).~ϕK1

and

T15 =
∑

K∈M∗∗Λ

((uK∗−uK)~θ2(K,K∗)+(uL−uK∗)~θ2(K∗, L)+(uK−uL)~θ2(L,K)).~ϕK2 .

Let us define

Term1 =
∑

K∈M∗∗\M∗∗Λ

∑

(M,N)∈SK
(|~τM,N |+ |~εM,N )|)d(M,N)(|~ϕK − ~ϕM,N |2)

and

Term2 =
∑

K∈M∗∗Λ

∑

(M,N)∈SK
|~τM,N |d(M,N)(|

~θ1(M,N).~ϕK1

|~τM,N |
+
θ2(M,N)~ϕK2

|~τM,N |
−~ϕM,N |2).

Using the Cauchy-Schwarz inequality, we obtain:
|T1 + T2|2 ≤ ||u||21,D∗∗(Term1 + Term2).
Besides, using the regularity of ~ϕ, there exists a constant Cφ such that ∀(M,N) ∈ SK
|ϕK − ϕM,N |2 ≤ Cφh

2
M∗∗ . Using

∑
K∈M∗∗

∑
(M,N)∈SK |~τM,N |d(M,N) = 2|Ω|, and

Lemma 5.1, there exists C30 such that
Term1 ≤ C30|Ω|(h2

M∗∗(1 + ε1(hM∗∗))) with limhM∗∗→0ε1(hM∗∗) = 0.
Moreover, using the regularity of ~ϕ, assumptions H5,H6 and Lemma 5.2, we get
that there exists C10 depending on θ and ~ϕ such that

∀(M,N) ∈ SK (|
~θ1(M,N).~ϕK1

|~τM,N |
+
θ2(M,N)~ϕK2

|~τM,N |
− ~ϕM,N |2) ≤ C10.

Following the same arguments as those described in [12] (Theorem 3.8), as the tensor
λ(x) is piecewise Lipschitz-continuous, we deduce that

∑
K∈M∗∗Λ

∑
(M,N)∈SK |~τM,N |d(M,N)

tends toward zero if hM∗∗ tends toward zero. (It means that the dimension of the
zones where the tensor λ(x) is discontinuous is inferior to one.)
We finally obtain that there exists C8 such that:

|T1 + T2| ≤ C8||u||1,D∗∗(hM∗∗ + ε2(hM∗∗))
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with limhM∗∗→0ε2(hM∗∗) = 0. Using (21), (27) and (25), we deduce that there exists
C9 only depending on θ and ~ϕ such that WD∗∗(~ϕ) ≤ C9(hM∗∗ + ε(hM∗∗)). This is
the dual consistency described in [18]. �

Corollary 5.4: With hypothesis 3.1, let S be a sequence of discretizations D∗∗ =
(HD, hM∗∗ , P (u),∇D,Λ) defined in (3). Under the assumptions of Proposition 5.3,
the FECC scheme is convergent, that is to say, P (u) converges to the exact solution
uexa of the problem and ∇D,Λu tends to ∇uexa as hM∗∗ → 0.
Proof

We measure the strong consistency of the FECC scheme with the interpolation
error function Si(ϕ) = {||P (ϕ)− ϕ||2L2(Ω) + ||∇D,Λϕ−∇ϕ||2L2(Ω)2}

1
2 ,

ϕ ∈ [C∞c (Ω)] and the dual consistency with the conformity error function

Wi,D∗∗(~ϕ) = maxu∈HD ||
1

∇D,Λu(x)
||
∫

Ω
(∇D,Λu(x).~ϕ+P (u)(x)div~ϕ(x))dx,∀~ϕ ∈ [C∞c (Ω)]2.

Using the definition of P (u) and P1(u), we obtain that:

||P (u)− P1(u)||L2(Ω) ≤ hM∗∗(||∇P1u||L2(Ω)2 + ||∇D,Λu||L2(Ω)2).

With (21) and (25), there exists C40 such that:

||P (u)− P1(u)||L2(Ω) ≤ C40hM∗∗ ||∇D,Λu||L2(Ω)2 . (28)

In the same way, for ϕ ∈ [C∞c (Ω)], we get that:

||P (ϕ)− P1(ϕ)||L2(Ω) = ε3(hM∗∗) (29)

with limhM∗∗→0ε3(hM∗∗) = 0. Using (26), we deduce that there exists C41 such that

||P (u)||L2(Ω) ≤ C41||∇D,Λu(x)||{L2(Ω)}2 . (30)

We deduce that the FECC scheme is coercive. Using proposition 5.3, (28) and
(29), we obtain that ∀ϕ ∈ [C∞c (Ω)], limhM∗∗→0Si(ϕ) = 0 and ∀~ϕ ∈ [C∞c (Ω)]2

limhM∗∗→0Wi,D∗∗(~ϕ) = 0. We conclude applying corollary 2.3 described in [18].
�

6 Numerical results

We introduce some notations for all the tests:

• nunkw: number of unknowns,

• umin: value of the minimum of the approximate solution,

• umax: value of the maximum of the approximate solution.

Let us denote by uana the exact solution, uM = (uK)K∈M the piecewise constant
approximate solution,

• erl2, the relative discrete L2 norm of the error, as follows:
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erl2 =




∑
K∈M

|K|(uana(xK)− uK)2

∑
K∈M

|K|uana(xK)2




1
2

,

• ergrad, the relative L2 norm of the error on the gradient,

• ratiol2: for i ≥ 2,

ratiol2(i) = −2
ln(erl2(i))− ln(erl2(i - 1))

ln(nunkw(i))− ln(nunkw(i - 1))
,

• ratiograd, for i ≥ 2, the same formula as above with ergrad instead of erl2.

Test 1: Mild anisotropy
We consider an homogeneous anisotropic tensor, as follows:

Λ =

(
1.5 0.5
0.5 1.5

)
.

Test 1.1 The exact solution uana and the source term f satisfy:





uana(x, y) = 16x(1− x)y(1− y) in (0, 1)× (0, 1) ,
uana(x, y) =0 on the boundary of [0, 1]× [0, 1],
f(x, y) = −∇. (Λ∇uana) .

nunkw erl2 ratiol2 umin umax ergrad ratiograd

56 9.74303E-03 9.12E-02 9.28E-01 1.46E-02

224 2.44889E-03 1.99E+00 2.54E-02 9.28E-01 8.15E-03 0.848

896 6.08651E-04 2.00E+00 6.70E-03 9.95E-01 4.26E-03 0.936

3584 1.52175E-04 1.99E+00 1.73E-03 9.99E-01 2.17E-03 0.967

14336 3.81026E-05 1.99E+00 4.36E-04 1.00E+00 1.10E-03 0.983

Mesh 1 - regular triangular mesh.

nunkw erl2 umin umax ergrad

289 2.68581E-03 1.26800E-02 1.0020E+00 2.81E-02

Mesh 4.1 - distorted quadrangular mesh.

nunkw erl2 umin umax ergrad

1089 7.60982E-04 3.48999E-03 1.0007E+00 1.29E-02

Mesh 4.2 - distorted quadrangular mesh.
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Mesh 4.1 − distorted quadrangular mesh Mesh 4.2 − distorted quadrangular mesh

Test 1.2 The exact solution and the source term f satisfy:

{
uana(x, y) = sin((1− x)(1− y)) + (1− x)3(1− y)2,
f(x, y) = −∇.(Λ∇uana).

nunkw erl2 ratiol2 umin umax ergrad ratiograd

56 2.25334E-03 7.16810E-03 1.3786 1.56E-03

224 6.03417E-04 1.90E+00 1.77495E-03 1.5973 9.52E-04 0.718

896 1.54969E-04 1.96E+00 4.42261E-04 1.7160 5.44E-04 0.808

3584 3.91813E-05 1.98E+00 1.10442E-04 1.7779 2.93E-04 0.890

14336 9.84396E-06 1.99E+00 2.75983E-05 1.8095 1.53E-04 0.938

Mesh 1 - regular triangular mesh.

nunkw erl2 ratiol2 ergrad ratiograd

40 5.41026E-03 2.43e-02

160 1.29132E-03 2.06E+00 1.35E-02 0.848

640 3.06998E-04 2.07E+00 7.12E-03 0.926

2560 7.43874E-05 2.04E+00 3.65E-03 0.964

10240 1.82906E-05 2.02E+00 1.84E-03 0.982

Mesh 3 - locally refined nonconforming rectangular mesh.

Error between the exact solution and the computed solution..

Left: Result of the MPFA scheme [1]. Right: Result of the FECC scheme.
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Mesh 1 − regular triangular mesh Mesh3−locally refined nonconforming rectangular mesh

Test 2: Heterogeneous rotating anisotropy
The tensor Λ satisfies the equation:

Λ =
1

(x2 + y2)

(
10−3x2 + y2

(
10−3 − 1

)
xy(

10−3 − 1
)
xy x2 + 10−3y2

)
.

We define the exact solution and the source term f as:




uana(x, y) = sin(πx) sin(πy) in (0, 1)× (0, 1) ,
uana(x, y) =0 on the boundary of [0, 1]× [0, 1],
f(x, y) = −∇. (Λ∇uana) .

nunkw erl2 ratiol2 umin umax ergrad ratiograd

16 7.02265E-02 1.35E-01 9.34E-01 9.04E-02

64 1.67141E-02 2.07E+00 3.68E-02 9.8E-01 5.03E-02 0.770

256 4.25124E-03 1.97E+00 9.5E-03 9.94E-01 2.80E-02 0.919

1024 1.09645E-03 1.95E+00 2.4E-03 9.98E-01 1.43E-02 0.970

4096 2.81843E-04 1.96E+00 6.02E-04 9.99E-01 7.21E-03 0.988

Mesh 2 - uniform rectangular mesh.

Mesh 2 − uniform rectangular mesh

We consider the problem:
{
div (Λ∇u) = div (Λ∇uana) in Ω = (0, 1)× (0, 1) ,
u(x, y) = uana(x, y) on ∂Ω,
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for the following tests:

Test 3: Discontinuous anisotropy (see for more detail in section 4.2.1 of [12])
The analytical solution satisfies:

{
uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 0.01 cos(πx) sin(πy) if x > 0.5,

and we consider the tensor:

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
100 0
0 0.01

)
if x > 0.5.

nunkw erl2 ratiol2 umin umax ergrad ratiograd

56 5.45056E-03 -9.07E-03 9.06E-01 8.131501E-03

224 1.37517E-03 1.98E+00 -9.76E-03 9.75E-01 6.623965E-03 0.296

896 3.44881E-04 1.99E+00 -9.93E-03 9.93E-01 3.741116E-03 0.824

3584 8.65861E-05 1.99E+00 -9.98E-03 9.98E-01 1.972594E-03 0.923

14336 2.17672E-05 1.99E+00 -9.99E-03 9.99E-01 1.011825E-03 0.963

Mesh 1 - regular triangular mesh.
Error between the exact solution and the computed solution

Left: Result of the Diamond scheme [10]. Right: Result of the FECC scheme.

Test 3.b: Discontinuous anisotropy
The analytical solution an the tensor are not changed. We use the harmonic aver-
aging points yσ introduced by [3] to define the dual grid:

yσ =
λLdK,σyL + λKdL,σyK
λLdK,σ + λKdL,σ

+
dK,σdL,σ

λLdK,σ + λKdL,σ
(λσK − λσL) ,

where notations are defined in Lemma 2.1 of [3], page 2.
We obtain the following numerical results with this modification:

nunkw erl2 ratiol2 umin umax

56 4.99875E-03 -9.07E-03 9.06E-01

224 1.28975E-03 1.95E+00 -9.76E-03 9.75E-01

896 3.32247E-04 1.95E+00 -9.93E-03 9.93E-01

3584 8.47105E-05 1.97E+00 -9.98E-03 9.98E-01

14336 2.14672E-05 1.98E+00 -9.99E-03 9.99E-01
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The results are slightly more accurate than the previous results.

Test 4: Strong discontinuous anisotropy

The analytical solution is defined as follows:

{
uana(x, y) = cos(πx) sin(πy) if x ≤ 0.5,
uana(x, y) = 10−6 cos(πx) sin(πy) if x > 0.5,

and we consider the tensor:

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
106 0
0 0.01

)
if x > 0.5.

nunkw erl2 ratiol2 umin umax ergrad ratiograd

56 5.45798E-03 -9.07E-07 9.06E-01 8.138566E-03

224 1.37250E-03 1.99E+00 -9.76E-07 9.75E-01 6.624536E-03 0.296

896 3.43047E-04 2.00E+00 -9.93E-07 9.93E-01 3.741224E-03 0.824

3584 8.58622E-05 1.99E+00 -9.98E-07 9.98E-01 1.972620E-03 0.923

14336 2.14862E-05 1.99E+00 -9.99E-07 9.99E-01 1.011832E-03 0.963

Mesh 1 - regular triangular mesh.

Test 4.b: Discontinuous strong anisotropy
The analytical solution an the tensor are not changed. We also use the harmonic
averaging points yσ introduced by [3] to define the dual grid.
We obtain the following numerical results:

nunkw erl2 ratiol2 umin umax

56 5.03257E-03 -9.07E-07 9.06E-01

224 1.29392E-03 1.95E+00 -9.76E-07 9.75E-01

896 3.32255E-04 1.96E+00 -9.93E-07 9.93E-01

3584 8.44700E-05 1.97E+00 -9.98E-07 9.98E-01

14336 2.13100E-05 1.98E+00 -9.99E-07 9.99E-01

The results are slightly more accurate than before.

Remark 6.1: In test 3.b and test 4.b, the tensors are discontinuous on the line
(d): x = 0.5. All the points yσ belong to the edges σ which are common edges of
the two adjacent control volumes, computed by

yσ =
λLdK,σyL + λKdL,σyK
λLdK,σ + λKdL,σ

,

because all the vectors λσK , λσL are equal to 0.

In test 5, we show that [3] does not provide an ”acceptable” yσ.
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Test 5: Discontinuous anisotropy (case where the harmonic averaging points
are not always defined)
The analytical solution satisfies:

uana(x, y) = sin(πx)

and we consider the tensor:

Λ(x, y) =

(
1 0
0 1

)
if x ≤ 0.5, Λ(x, y) =

(
1 9
9 100

)
if x > 0.5.

We obtain the following numerical results with the FECC scheme:

nunkw erl2 ratiol2 umin umax

56 2.81812E-01 1.51E-01 1.80E+00

224 2.59236E-02 3.44E+00 7.81E-02 1.10E+00

896 3.56133E-03 2.86E+00 3.92E-02 1.02E+00

3584 5.81922E-04 2.61E+00 1.96E-02 1.00E+00

14336 1.43293E-04 2.02E+00 9.81E-03 1.00E+00

Here, we can construct the FECC scheme because the dual mesh is defined. Initially,
the primary mesh points were located at the barycenter of each triangle cell. We
chose to slightly move them such that the hypothesis 3.1 is satisfied for any edge of
the primary grid.

We give here the coordinates of a few yσ for the coarse grid.

nunkw K L x
(K,L)
s x

(K,L)
s′ yσ

56 6 18 (0.5, 0) (0.5, 0.25) (0.5,−0.105128205)

14 24 (0.5, 0.25) (0.5, 0.5) (0.5, 0.120512821)

The scheme of [3] is not defined, because there are some harmonic averaging points
yσ which are outside the edges σ.

x
x

K
L

x

(K,L)x s

s’
(K,L)

In this figure, the edge σ which is a common edge between K and L, has two vertices

x
(K,L)
s and x

(K,L)
s′ .

We see here another difference between the FECC scheme and the scheme of [3].
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7 Comments on the results

a) In test 1.1, for triangular cells, where the mesh and the solution are regular, we
obtain a second order convergence in the L2 norm and an order close to 1 for the
gradient.

Mesh 1 − regular triangular mesh
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b) In test 1.2, we obtain an order of convergence in the L2 norm close to 2
for regular triangular meshes and locally refined nonconforming rectangular meshes.
The order of convergence of the gradient tends toward 1 for regular triangular meshes
and locally refined nonconforming rectangular meshes.

Mesh 3 − Locally refined nonconforming rectangular mesh

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 56  224  896  3584  14336

our scheme
FVHYB

MFV
SUSHI

FVSYM
MFD−BLS

DDFV−HER
CMPFA

Number of unknowns

Re
la

tiv
e 

di
sc

re
te

 L
² n

or
m

 o
f t

he
 e

rr
or

Mesh 1 − regular triangular mesh
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c) In test 2, for uniform rectangular meshes where Λ is an heterogeneous ten-
sor, we obtain an order of convergence near to 2 in the L2 norm and the order of
convergence of the gradient tends toward 1.

Mesh 2 − uniform rectangular mesh
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From the graphs which describe the number of unknowns and relative discrete L2

norm of the error, we see that the errors of the FECC scheme are less important
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than the errors of [4], [6], [16], [23], [24], [22], [20], [15] and the orders for the gra-
dient of the scheme are close to those of the Galerkin finite element method (see [6]).

d) In test 3, for regular triangular meshes where Λ is discontinuous, we obtain
an order of convergence near to 2 in the L2 norm and the order of convergence for
the gradient tends toward 1. With the same number of unknowns, the errors of the
scheme in the L2 norm are less than the errors of [10].

Mesh 1 − regular triangular mesh
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Diamond scheme

e) In test 4, for regular triangular meshes where Λ is an heterogeneous tensor
with a strong anisotropy, we obtain an order of convergence in the L2 norm near to
2 and the order of convergence for the gradient also tends toward 1.

We compare the FECC scheme with the following methods:
Cell centered schemes:

• CMPFA: Compact-stencil MPFA method for heterogeneous highly anisotropic
second-order elliptic problems, [23].

• FVHYB: A symmetric finite volume scheme for anisotropic heterogeneous
second-order elliptic problems, [4].

• FVSYM: Numerical results with two cell-centered finite volume schemes for
heterogeneous anisotropic diffusion operators, [24, 25].

• SUSHI: A scheme using stabilization and Hybrid Interfaces for anisotropic
heterogeneous diffusion problems, [16].

Discrete duality finite volume schemes:

• DDFV-HER: Numerical experiments with the DDFV method, [22].

Finite elements schemes:

• FEP1: A Galerkin finite element solution, [6].

Mixed or hybrid methods:

• MFD-BLS: Mimetic finite difference method, [20].

• MFV: Use of mixed finite volume method, [15].
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8 Conclusion

We constructed a cell-centered scheme for diffusion problem on general meshes.
With light assumptions, the matrix which is associated to the scheme is symmetric
positive definite. This allows us to use efficient methods to solve the system of lin-
ear equations. Moreover, the scheme is locally conservative. The comparison with
standard schemes shows that our scheme is very accurate in L2 norm. Moreover, we
proved that the FECC scheme is convergent in the anisotropic discontinuous cases.

Acknowledgments: we would like to thank Prof. Jérôme Droniou for reading
and giving us some advices throughout our study.
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