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Abstract. High Intensity Focused Ultrasound (HIFU) uses the energy of an ultrasonic beam to 

cause localized heating to alter or destroy the targeted tissues. Due to its limited collateral effects, 

this minimally invasive therapy is, in its field of application, an alternative to surgical treatments 

and is rapidly expanding in terms of both clinical research and industrial development. In this 

context, the use of simulation is a crucial element to reduce both the development time and 

prototype costs, as well as the number of preclinical and clinical experiments. To this aim, CEA-

LIST has been developing the simulation platform, CIVA HealthCare in partnership with 

INSERM for several years, which uses optimized and validated modules for the simulation of a 

whole HIFU therapy protocol. However, multi-parametric studies for treatment optimisation 

(probe design, protocol definition, etc.), sensitivity analysis, and tissue characterisation are very 

time-consuming, since they involve many simulations. We propose an alternative solution of 

replacing the computationally expensive direct solver with a surrogate model built from a 

database of simulation results. The procedure breaks down into two stages First, the database is 

adaptively constructed to maximise the fidelity of the associated interpolator computed from the 

pairs (Input/Output) of the database. Then in the second step, the interpolator, also called 

surrogate model or metamodel, enables the generation of results in near real time for 

configurations covered by the range of the database. This procedure and its related tools have 

been implemented in CIVA-HealthCare. To highlight the potential offered by such intensive 

HIFU simulation based on surrogate models strategy, two applications are presented: The first 

concerns real-time pressure field computation, and the second is based on thermal simulations 

and deals with sensitivity analyses according to uncertainties in tissues parameters. Work 

supported by French Nation Research Agency (ANR SATURN -15-CE19-0016) 

1. Introduction 

The ability of ultrasound technology to modify or destroy biological tissues has been known for decades. 

Specifically, High Intensity Focused Ultrasound (HIFU) can induce a temperature increase at the focal 

point, generating localized coagulation necrosis at this point. Due to the limited collateral effects on the 

neighbouring organs and/or on the healthy parts of the treated organ, this minimally invasive therapy is 

of great interest for the treatment of numerous pathologies and is currently developing rapidly in terms 

of clinical research and industrial development [1]. Already used to treat certain cancers (prostate cancer, 



 

 

 

 

 

 

liver metastases, brain tumors, etc.) [1] and to treat other types of pathologies such as uterine fibroids or 

glaucoma, HIFU treatment has also proven to be a valuable option for local recurrence after external-

beam radiation therapy [3] or combined with the growing field of immunotherapy [4]. 

 

The implementation of such HIFU therapies for a given treatment always requires the design of complex 

ultrasound probes (phased-array transducer) and the design of precise operating protocols to control the 

development of spatiotemporal damages during the heating - both in the targeted tissues and in the risk 

areas. Therefore, new therapeutic methods often needs several years of research, and any protocol 

established must then be adapted to preclinical experimentation and finally confronted with the 

individual specificities of each patient (clinical tests). In this context, modelling of the physical 

phenomena involved while taking into account the control of the ultrasound beam and the thermal 

response of biological tissues, is a crucial element to reduce both the development time, the prototyping 

costs, and the number of preclinical and clinical experiments. Unfortunately, the tools available to 

laboratories are limited and developments made are very specific, require significant development time 

and are rarely sustainable.  

In this context, CEA-LIST has been developing the simulation platform CIVA HealthCare in partnership 

with INSERM for several years. This platform enables the simulation of a whole HIFU therapy protocol, 

including the design of probes and protocols, the propagation of the pressure field inside the tissues, the 

induced temperature rise and finally the estimation of the created thermal lesions. However, since they 

involve a large number of parameters, design processes require a large amount of simulation results. 

Therefore, they rapidly become very time-consuming using standard approaches, especially for complex 

configurations and/or when physiological parameters are poorly defined.  

 

One solution to speed up these design stages is to use the concept of surrogate models also known as 

metamodels or emulators. This method consists in replacing the computationally expensive direct solver 

with a surrogate model built from a database of simulation results. This surrogate model enables fast 

and accurate generation of simulation results in near real time for any configuration covered by the range 

of the database. Generation of a metamodel has been recently successfully applied in the field of Non-

Destructive Testing (NDT) [5] using tools available in the CIVA platform (dedicated to NDT 

simulations). This procedure can be divided into two stages. In a first step (offline part), the database is 

adaptively constructed in order to maximise the accuracy of the associated interpolator calculated from 

the (Input / Output) pairs of the database, which can be time-consuming. In a second step (online part), 

the interpolator (also called database metamodel) is used to generate results in near real time. 

Importantly, results can only be obtained in the range of input data used for the generation of the 

database. Several interpolation approaches have been developed in the literature to generate metamodels  

[6]. Recent contributions, linked to NDT applications, involve particular interpolators based on Kriging 

estimation [7], [8], [9] and on Radial Basic Functions (RBF) [10]. Very recent alternative algorithms 

based on Support Vector Regression (SVR) have been applied for inversion purposes [11]. Finally, the 

Least Square Support Vector Regression (LSSVR) [12] algorithm has been used to carry out sensitivity 

analysis studies and calculation of probability of detection curves in ultrasonic NDT applications [13].  

After introducing the CIVA HealthCare Platform, we will describe the specific tools (parametric 

variation, database creation, metamodel generation and statistical analysing) that have been integrated 

into the platform to define a surrogate model dedicated to HIFU simulations. We will focus on two 

applications: real-time pressure field computation, and sensitivity analysis according to the uncertainties 

of the tissues parameters for a treatment protocol. 

 

2. Materials and methods 

Description of the CIVA HealthCare simulation platform. 

This platform allows for easy simulation of 3D pressure field induced by HIFU in the linear regime, as 

well as the corresponding thermal damages in tissues and phantoms. The computation steps are 

represented in Figure 1. Specific Graphic User Interfaces (GUI) have been designed to intuitively define 

all of the parameters influencing the acoustic field and the tissue eating, i.e.  



 

 

 

 

 

 

- Geometric and structural description of probes (single crystal or phased array including 

positioning, cutting and electrical interconnections of the elements) 

- Geometric description of the organs and the acoustic, biological and thermal parameters of each 

tissue.  

- Probe positioning relatively to the organs 

- Modes of activation to be implemented (input signal, power, frequency, shoot duration, phase 

laws, etc.)  

 

 

Figure 1: Computation steps of a HIFU protocol in the CIVA HealthCare Platform 

 

Pressure field computation module 

Two algorithms for calculating acoustic fields in a linear regime have been developed and validated. 

The objective is to cover all of the tissue configurations encountered in ultrasound therapy, and to ensure 

numerical efficiency necessary for intensive use of the model by using analytical formulations whenever 

possible, that is to say whenever it involves no loss of generality. These two algorithms are based on the 

resolution of the Rayleigh integral. 

- The PressureField calculation code: This code assumes longitudinal mode propagation 

(compression wave) by considering that the tissues behave, from the elastic point of view, like 

liquids. The crossing of organs and soft tissues of different characteristics therefore only results in 

variations in attenuation of the longitudinal wave (the speed is assumed to be uniform throughout the 

medium crossed as in [14]). The PressureField code, resulting from a CEA-LIST / LabTAU 

collaboration, is an optimised and parallelised (CPU / GPU) code. 

- The CIVA calculation code: This code comes from the evolution of the CEA-LIST library initially 

dedicated to NDT and experimentally validated in many complex NDT configurations [15]. Unlike 

the previous code, it allows computation in harmonic and impulse mode, and the consideration of 

complex configurations including possible solid obstacles (bones, prostheses, brachytherapy grains, 

etc.) or media with spatially continuously varying parameters (for example inhomogeneous velocity 

due to local heating) that can modify the transmitted beam and disturb the tissue insonification. When 

considering solidvolumes to which elastic characteristics are attributed, the ultrasonic propagation 

model, using the pencil (or ray-beam) method, takes into account the refractions / reflections of the 

waves at the surface of these volumes as well as the local inhomogeneities of the wave speed, such 

as those produced by local heating of the tissues [16]-[19]. 

By addressing different issues, these two algorithms are therefore complementary, with the computation 

performances of the former being optimal within its domain of validity. These two models collect all 



 

 

 

 

 

 

the input data of the simulation configuration using the dedicated GUI. The simulation results provide 

the 3D pressure field induced in the tissues which, can be visualised and analysed using several specific 

tools available in the software.  

 

Temperature rise and thermal dose computation module 

The temperature rise induced by HIFUs in biological tissues is calculated by solving the Bio-Heat 

Transfer Equation (BHTE) [20] where the heat deposition in tissues is proportional to the ultrasound 

beam intensity. The resolution of the BHTE is carried out using the method proposed by Chato [21]. 

The chosen method consists of an explicit resolution by finite differences. From the temperature map 

obtained at each instant t, the thermal dose “deposited” in the tissues is calculated using the empirical 

formula proposed by Sapareto and Dewey [22]. This method makes it possible to estimate the shape, 

position, and degree of thermal damage within the tissue [23]. 

 

Intensive HIFU simulation based on surrogate models 
Previous modules give the CIVA platform the ability to perform, even in complex configurations, 3D 

pressure field simulations and induced damage estimation. To perform near real-time simulations 

allowing multi-parametric studies for probe and treatment optimisation or for tissue characterisation 

using parametric inversion, numerical tools for an intensive HIFU simulation based on surrogate models 

have been implemented into the CIVA HealthCare platform. In addition to the creation of the database 

and the generation of metamodels, some numerical tools and their specific GUI allow for complex 

studies, such as sensitivity analysis, to be performed easily.  

 

3. Applications of intensive HIFU simulation based on surrogate models 

To highlight the potential offered by the intensive HIFU simulation based on surrogate models strategy, 

two application examples are proposed: The first concerns a real-time pressure field calculation, and the 

second concerns a sensitivity analysis to study the effects of parameter uncertainty on the estimation of 

the treated volume. 

 

Real-time pressure field simulation 

The chosen application, developed in collaboration with EDAP-TMS, relates to the treatment of prostate 

cancer using an endorectal probe. In order to integrate a simulation module into a medical device, the 

objective here is to generate a real-time pressure field simulation module, whose input parameters can 

be personalized according to the anatomical specificities of the patient. The simulation configuration 

used to generate the metamodel is represented in Figure 2. The probe is inserted into a cylinder, made 

of three layers, corresponding respectively to the rectum wall, a fat layer and the prostate tissue.  

 

 

 

Figure 2: Pressure computation configuration for database generation. 

 

The acoustical parameters of the tissues are reported in the table below:  

 



 

 

 

 

 

 

Tissue 
Speed 

(M/S) 

Density 

(Kg/M3) 

Attenuation  

𝛼 = 𝑎0𝑓𝑏 

𝑎0 (Np/M/MHz) b 

Water 1483 1000 0 1 

Rectum 1483 1088 5.74 1 

Fat 1483 911 4.36 1.09 

Prostate 1483 1045 9.32 1 

Table 1: Acoustical parameters of the tissues ([24]) 

 

For each focal depth (8 in this application), the database is constructed by varying the following four 

parameters in their respective range: 

• The height of the water pocket (distance from the probe to the rectal wall): 21 ≤ d ≤ 26 

• The inner radius of the rectum: 21 ≤ R ≤ 26 

• The thickness of the rectum: 3 ≤ eRec ≤ 11 

• The fat layer thickness: 0.1 ≤ eGr ≤12 

The GUI corresponding to the generation of the associated metamodel is shown in Figure 3. Taking into 

account the regularity of the field maps obtained on the ranges of variations, we used a sampling of the 

database of the type "experiment plan". In this case, the database is sampled regularly in the volume of 

parameters. Here, we therefore carry out 34 = 81 field maps computations with the direct model from 

CIVA HealthCare, corresponding to all the configurations defined by the ranges of variation of the four 

parameters. For each calculation, the complete map of the field is extracted and stored in the database. 

For this example, the RBF-based interpolation method was used to create the metamodel.  

 

Figure 3: Variation range of the four metamodel parameters  

 

A cross-validation phase was carried out by deleting 27 elements, among the 81 from the complete 

database, and constructing the metamodel with the 54 remaining elements. For each of the 27 elements 

used for the test, it is possible to compare the reference pressure field obtained using the CIVA 

HealthCare simulation tool with that approximated pressure field obtained with the metamodel. The 

goal here is to validate the metamodel by comparison to the reference, regardless of its validity, which 

must be the subject of a specific study. 

In a first validation phase, we have compared the L2 norms of the reference (CIVA HealthCare) and 

predicted (metamodel) pressure field maps. On the graph represented in Figure 4, obtained for all 27 

elements of the test base generated for a given focal depth, we note a very good correlation between 

calculated and predicted maps, with all the comparisons being located on the bisector.  



 

 

 

 

 

 

 

 

Figure 4: Comparison of the L2 norms of pressure fields predicted by the metamodel vs computed by 

CIVA HealthCare  

 

 

Figure 5: Example of comparison of field maps in the XZ and YZ plane of the probe 
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In a second validation phase, a comparison of the reference and predicted pressure fields has been 

obtained by calculating the map of their difference. In Figure 5, we present the comparison of the 2D 

field maps obtained in the XZ and YZ planes of the probe for an element in the test group. We observe 

that there is more than three orders of magnitude between the observed error and the actual mapping of 

the field. 

In a general way, for the eight focal depths and all the elements among the 27 retained for the test, we 

obtained a maximum error of less than one percent (corresponding to low pressure points located far 

from the focal zone). It should be also noted that in our application, the accuracy of the final metamodel 

is certainly greater than that, since the 27 test elements have been reintegrated into the whole database 

composed of 81 results.  Finally, in terms of performance, one field calculation with the standard 

approach from CIVA HealthCare requires about 10 minutes on a standard laptop with four cores, while 

a result is obtained instantly with the metamodel. Therefore, surrogate models enable real-time 

simulation of the pressure field with a controlled error for any configuration within the range of variation 

of the parameters.  

 

Sensitivity analysis 

The simulation configuration is very close to the one previously shown. In this case, we simulate the 

lesion generated for an established treatment protocol (Figure 6) and we aim at studying the evolution 

of its volume according to the variations of a set of three parameters considered uncertain or variable: 

the emitted power, the rectum thickness, and the attenuation coefficient of the target. We have generated 

the metamodel, dedicated to the lesion volume estimation, based on the parameter ranges illustrated 

Figure 7. 

 

 
Figure 6: Example of treatment simulation result  

 

This metamodel can then in particular be used in the context of statistical studies requiring a very large 

number of simulations generated randomly using a Monte Carlo procedure according to a specific 

statistical law (uniform, Gaussian ...) applied to each parameter in its domain of variation. Figure 8 

represent the result of a sensitivity analysis performed using this metamodel. A thousand simulations 

have been performed in less than one second using a specific Gaussian distribution applied on each 

parameter (red curve on the left side). The pink graph represents, for the whole set of the 1000 simulation 

configurations, the value of the three input parameters and the lesion volume estimated by the 

metamodel. We can verify that this random procedure respects the statistical law applied on each 

parameter. For this set of statistical laws applied to each parameter, which does not correspond to a real 

application case, the first-order Sobol index shown at the bottom of the figure clearly indicates that the 

most influential parameter is the attenuation coefficient in the targeted tissue (almost 85%), while that 

of the thickness of the rectum seems negligible (less than 2%). This sensitivity analysis has been very 



 

 

 

 

 

 

useful to determine the physiological parameters that has to be accurately measured to obtain reliable 

simulations. 

 

 
Figure 7: Variation range of the three metamodel parameters  

 

 

 
 

Figure 8: Example of sensitivity analysis applied on a simulated protocol 

 

4. Conclusions 

Currently, HIFU simulation tools are commonly used to design or optimize HIFU treatment protocols. 

Unfortunately, currently available models are time consuming and do not yet seem sufficiently robust 



 

 

 

 

 

 

to  provide sufficient accuracy in real world applications, leading to simulation results are not always 

consistent with clinical results. There are multiple causes, but the most critical one is undoubtedly the 

lack of knowledge concerning the physiological parameters, and more particularly, their variability as a 

function of temperature and/or tissue denaturation. Actually, research is underway to measure and, if 

possible, to determine dynamic models of these variations. An example could be to account of velocity 

or attenuation variations according to temperature during the heating process simulation. HIFU 

simulation tools taking into account dynamic aspects are already under development within the CIVA 

HealthCare Platform. However, while awaiting these new features, simulation users spent significant 

time to realise intensive simulations such as multi-parametric studies. In this paper, an alternative 

solution, based on a surrogate model strategy, has been proposed to provide near real-time simulations 

and related tools for statistical analysis.  

The next steps will concern the continuation of experimental validations and benchmarking of field 

computations, especially in complex configurations. Specific procedures dedicated to protocol 

parameters optimisation (probe design, shoots sequence…) and tissue characterisation based on 

metamodels will be developed.  

Finally, it is important to note that the metamodel approach developed in CIVA HealthCare is 

completely generic and can be applied to any type of simulation tool. Thus, the new models that should 

be integrated in the long term for simulating complex phenomena such as motion [25], cavitation [26], 

[27] and field calculation in a non-linear regime [28] will be able to benefit from this strategy whatever 

their complexity and their numerical performances. 
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