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Abstract: This work presents a lightweight steering 
algorithm specifically designed for active perception 
sensors (Lidars, Radars or Sonars) that support 
online configurable scanning beam. The algorithm 
aims to improve the sensor capabilities in terms of 
frame rate and accuracy in some regions of interests 
(ROIs) with a limited power budget typically less than 
2 Watts. 
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1. Introduction 

Active perception sensors such as Lidars, Radars or 
Sonars scan the environment by sending out signals 
in the form of beam shots, and processing the 
reflected echoes in order to locate obstacles. 
Traditional scanning policy consists in sending 
preconfigured beams with constant properties toward 
predefined directions. This approach is well illustrated 
by the scanning mechanism of rotating Lidars, which 
send light beams with the same properties toward 
predefined azimuth and elevation angles at a 
constant rate. 
 
Sensors which have online configurable steering 
capabilities, for example with regards to beam 
direction and beam divergence, already exist on the 
market for some technologies – Multiple Input Multiple 
Output (MIMO) radars for instance – and are in 
development for other technologies (Sonar, Lidar). By 
allowing the beam parameters to be configured in real 
time, smart scanning policies, more complex 
compared to traditional ones, can be implemented in 
order to improve the sensor capabilities in terms of 
frame rate and energy consumption. 
 
A smart scanning policy aims to provide higher rate 
and higher precision measurements in some regions 
of interests (ROIs), while maintaining constant or 
reducing rates and precision elsewhere. In this work, 
ROIs are determined using a lightweight steering 
algorithm integrated into the device and which 
analyses the scan history. The algorithm can also 
take into account user-defined ROIs provided by 
external applications through an Application 
Programming Interface (API). 
 
Modern sensors are equipped with micro-controller 
units (MCUs) in order to perform advanced edge 
signal processing. Our smart scanning algorithm is 

designed to be integrated in such MCUs and is thus 
expected to have a low impact on the final bill of 
material (BOM) of the sensor device. 
 
The steering algorithm relies on innovative 
approaches [1, 2, 5] to build an environment model 
from successive sensor scans with a power budget 
typically less than 2 Watts. It subsequently generates 
a list of commands that controls the beam divergence 
and direction in order to optimize the amount of beam 
shots required for covering the ROIs [3], hence 
decreasing the number of beam shots necessary to 
cover the environment. This optimization translates 
into either a faster possible frame rate or a lower 
power consumption. It additionally allows for a higher 
accuracy in the detection and definition of obstacles 
within the ROIs. 
 

2. Principle of the steering algorithm 

We assume that the active perception sensor being 
used can be controlled with at least one of the 
following parameters: 

 The polar angle θ and elevation φ of the sensor 
beam 

 The angular opening α of the sensor beam 

Several modules are running together and 
communicate with each other in order to perform the 
real time steering process (Figure 1). 

 

 

 
Figure 1: Diagram describing the principle of the 

steering algorithm 

 

2.1 Building the environment model 

The first module receives the data produced by the 
sensor, and processes it in order to build the 
environment model of the scene. This is performed 
either in conjunction with another perception sensor’s 
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data – called companion sensor – or solely with the 
current sensors data. Either way, the environment 
model chosen is a probabilistic Occupancy Grid (OG). 
In a probabilistic OG, space is divided into squares in 
2D or cubes in 3D, and each of these cells contains 
the probability of this space being occupied based on 
the sensors data and prior knowledge. The Bayesian 
fusion performed to build the OG utilizes a patented 
method that uses integer arithmetic in order to save 
computing power [4]. 

If the angular opening α of the sensor beam is 
controllable, it is modelled with the help of the patent 
[2] before being fused in the OG. In order to take into 
account the temporal aspect of the fusion between the 
previous knowledge of the environment and the new 
data, a forgetting factor is introduced. Indeed, before 
adding the new data to the OG, each cell receives a 
treatment that uniformly shifts the occupation 
probability of the cell towards 0.5. This gives more 
importance to the most recent data. 

2.2 ROI identification 

The second module uses the environment model built 
by the first one as an input in order to calculate ROIs. 
The ROIs are described as a list of positions and sizes 
weighted by the importance of each region. The way 
they are calculated can vary greatly based on the 
targeted application. They can for instance be based 
on identified specific objects, edges, least observed 
areas, moving targets, closest targets, etc… Since 
the form that this module can take is so diverse and 
this is not the focus of this article, the ROI module 
used as an example will only be briefly discussed in 
the result section. 

2.3 Targeting policy 

The next module uses the ROIs calculated by the 
previous one as inputs to determinate the list of 
commands to send to the controllable sensor for its 
next scan. Based on their size and importance, 
different profiles can be chosen: higher or lower 
density of shots, wider or narrower beam.  

2.4 Output format 

Depending on the needs of the user, this processing 
chain can provide several different outputs. First, an 
obvious choice is to keep the original output format of 
the sensor. It has the same format as what would the 
sensor provide without the steering algorithm, and it 
is thus transparent for the user. The only difference is 
the non-uniform distribution of shots, and the variation 
in the beam divergence between shots. If a more 
exhaustive understanding of the environment is 
expected, the whole model of the scene can be 
provided (OG), as well as the list of ROIs. Finally, 
virtual data can even be reconstructed from the OG in 
order to provide uniform pointclouds (PCL) even in 
areas where the sensor did not shoot, if such a data 
structure is required by the user. 

We will now describe with more details a specific 
implementation of the steering algorithm developed 
as a proof of concept. 

3. Experimental results 

The steering algorithm has been tested on an NVIDIA 
Jetson Nano with 4GB of RAM. It should be noted that 
the GPU is only used for the display of the data. The 
algorithm itself runs exclusively on the CPU. It runs at 
the same framerate as the sensor, which is 10Hz. The 
primary sensor in mind when this algorithm was 
developed was a solid state FMCW Lidar relying on 
OPA technology for the steering. Such sensors will hit 
the market of perception sensors in a few years, but 
are not yet available for testing. In order to test the 
capabilities of our steering algorithm with an 
experimental setup, we used a non-controllable Lidar 
(Ouster OS1-64). It is a rotating turret spinning at 
10Hz with 64 vertical layers of laser, connected with 
an RJ45 cable to the Jetson Nano. To mimic the 
behaviour of a steerable Lidar, we replaced the 
module that gives commands to the sensor with a 
module that instead filters the data of the Lidar. The 
filtered data points represent where a controllable 
Lidar would have fired. This approach conveniently 
allows us to calculate how many shots would be 
saved compared to the traditional uniform targeting of 
the rotating turret Lidar. 

A webcam is used in the experiments uniquely to 
improve the understanding of the displayed data; it 
does not play any role in the steering algorithm. 
However, it could be utilized as a companion sensor 
with the help of AI algorithms to select ROIs from the 
images for instance. The ROIs chosen by the steering 
algorithm would then come from both the data of the 
camera and the Lidar. 

The ROI identification module chosen to demonstrate 
the capabilities of the steering algorithm in the 
experimental setup is based on the algorithm 
introduced in [5]. This algorithm uses OGs as inputs 
in order to estimate the motion of likely occupied cells 
and detect dynamic cells. Groups of cells likely 
moving together in the same direction are then 
clustered. The ROIs chosen are those clusters. 

The Lidar is kept immobile in the experiments 
conducted. Figure 2 shows a snapshot from the 
display of the experiment. A person is moving in the 
scene (towards the sensor in this specific example), 
and we can see the higher density of data points 
targeting the moving person compared to the 
surroundings. The targeting policy consists in using 
the full Lidar resolution in the ROI, and 1/8 of the 
points in the other areas. The ratio of the amount of 
points in the filtered PCL compared to the full 
resolution PCL thus varies between one 8th and one 
depending on the area of the ROIs. Although this data 
reduction does not save energy in the filtering setup, 
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it would in the case of a steerable Lidar. This would 
thus lead to a lower power consumption of the Lidar, 
or a faster frame rate depending on the application 
targeted. 

 

 
Figure 2: Snapshot of the display of the experimental 

setup. The top panel shows the filtered PCL 
representing the data that a real steerable Lidar 

could provide. The bottom panel shows the filtered 
PCL superimposed with the image of a webcam for a 
better understanding of the scene. The difference in 

the density of points is clearly visible in this 
representation. 

 

4. Conclusion 

We presented in this article a versatile steering 
algorithm with a modular architecture that makes it 
adaptable to many use cases. Thanks to the use of 
OGs, the method is agnostic to the presence or 
absence of companion sensors as long as their data 
can be fused in an OG. Both the output format and 
the ROI calculation can be adapted for each situation. 
The lightweight approach of the algorithm coupled 
with the fact that it can work in closed loop only with 

the steerable sensor’s data makes it ideal to be 
integrated in the sensor MCU itself, enhancing its 
capabilities without increasing its BOM. 
The experimental results shown are encouraging and 
pave the way for when steerable Lidars will be 
available. The control of the beam divergence was not 
investigated with the current setup due to the nature 
of the available Lidar but will be in future experiments, 
as it is expected to bring even more flexibility to the 
system. 
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7. Glossary 

OG:   Occupancy Grid 

ROI:  Region Of Interest 

MIMO:  Multiple Input Multiple Output (Radar) 

API:  Application Programming Interface 

MCU:  Micro Controller Unit 

BOM:  Bill Of Material 

PCL:  Pointcloud 

GPU:  Graphics Processing Unit 

CPU:  Central Processing Unit 

RAM:  Random Access Memory 

FMCW: Frequency-Modulated Continuous-Wave 

OPA:  Optical Phased Array 

AI:   Artificial Intelligence 


