
HAL Id: cea-04487832
https://cea.hal.science/cea-04487832

Submitted on 4 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A lightweight Steering Algorithm for Smart Scanning
Aurelien Fresneau, Tiana Rakotovao, Diego Puschini

To cite this version:
Aurelien Fresneau, Tiana Rakotovao, Diego Puschini. A lightweight Steering Algorithm for Smart
Scanning. CESA 2022, Dec 2022, Versailles, France. �cea-04487832�

https://cea.hal.science/cea-04487832
https://hal.archives-ouvertes.fr

[Tapez ici]

A lightweight Steering Algorithm for Smart Scanning

A. Fresneau1, T. Rakotovao1, D. Puschini1

1: Univ. Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Abstract: This work presents a lightweight steering
algorithm specifically designed for active perception
sensors (Lidars, Radars or Sonars) that support
online configurable scanning beam. The algorithm
aims to improve the sensor capabilities in terms of
frame rate and accuracy in some regions of interests
(ROIs) with a limited power budget typically less than
2 Watts.

Keywords: Smart Sensors, Lidar, Radar, Low Power,
Smart Scanning, Smart Steering

1. Introduction

Active perception sensors such as Lidars, Radars or
Sonars scan the environment by sending out signals
in the form of beam shots, and processing the
reflected echoes in order to locate obstacles.
Traditional scanning policy consists in sending
preconfigured beams with constant properties toward
predefined directions. This approach is well illustrated
by the scanning mechanism of rotating Lidars, which
send light beams with the same properties toward
predefined azimuth and elevation angles at a
constant rate.

Sensors which have online configurable steering
capabilities, for example with regards to beam
direction and beam divergence, already exist on the
market for some technologies – Multiple Input Multiple
Output (MIMO) radars for instance – and are in
development for other technologies (Sonar, Lidar). By
allowing the beam parameters to be configured in real
time, smart scanning policies, more complex
compared to traditional ones, can be implemented in
order to improve the sensor capabilities in terms of
frame rate and energy consumption.

A smart scanning policy aims to provide higher rate
and higher precision measurements in some regions
of interests (ROIs), while maintaining constant or
reducing rates and precision elsewhere. In this work,
ROIs are determined using a lightweight steering
algorithm integrated into the device and which
analyses the scan history. The algorithm can also
take into account user-defined ROIs provided by
external applications through an Application
Programming Interface (API).

Modern sensors are equipped with micro-controller
units (MCUs) in order to perform advanced edge
signal processing. Our smart scanning algorithm is

designed to be integrated in such MCUs and is thus
expected to have a low impact on the final bill of
material (BOM) of the sensor device.

The steering algorithm relies on innovative
approaches [1, 2, 5] to build an environment model
from successive sensor scans with a power budget
typically less than 2 Watts. It subsequently generates
a list of commands that controls the beam divergence
and direction in order to optimize the amount of beam
shots required for covering the ROIs [3], hence
decreasing the number of beam shots necessary to
cover the environment. This optimization translates
into either a faster possible frame rate or a lower
power consumption. It additionally allows for a higher
accuracy in the detection and definition of obstacles
within the ROIs.

2. Principle of the steering algorithm

We assume that the active perception sensor being
used can be controlled with at least one of the
following parameters:

 The polar angle θ and elevation φ of the sensor
beam

 The angular opening α of the sensor beam

Several modules are running together and
communicate with each other in order to perform the
real time steering process (Figure 1).

Figure 1: Diagram describing the principle of the

steering algorithm

2.1 Building the environment model

The first module receives the data produced by the
sensor, and processes it in order to build the
environment model of the scene. This is performed
either in conjunction with another perception sensor’s

[Tapez ici]

data – called companion sensor – or solely with the
current sensors data. Either way, the environment
model chosen is a probabilistic Occupancy Grid (OG).
In a probabilistic OG, space is divided into squares in
2D or cubes in 3D, and each of these cells contains
the probability of this space being occupied based on
the sensors data and prior knowledge. The Bayesian
fusion performed to build the OG utilizes a patented
method that uses integer arithmetic in order to save
computing power [4].

If the angular opening α of the sensor beam is
controllable, it is modelled with the help of the patent
[2] before being fused in the OG. In order to take into
account the temporal aspect of the fusion between the
previous knowledge of the environment and the new
data, a forgetting factor is introduced. Indeed, before
adding the new data to the OG, each cell receives a
treatment that uniformly shifts the occupation
probability of the cell towards 0.5. This gives more
importance to the most recent data.

2.2 ROI identification

The second module uses the environment model built
by the first one as an input in order to calculate ROIs.
The ROIs are described as a list of positions and sizes
weighted by the importance of each region. The way
they are calculated can vary greatly based on the
targeted application. They can for instance be based
on identified specific objects, edges, least observed
areas, moving targets, closest targets, etc… Since
the form that this module can take is so diverse and
this is not the focus of this article, the ROI module
used as an example will only be briefly discussed in
the result section.

2.3 Targeting policy

The next module uses the ROIs calculated by the
previous one as inputs to determinate the list of
commands to send to the controllable sensor for its
next scan. Based on their size and importance,
different profiles can be chosen: higher or lower
density of shots, wider or narrower beam.

2.4 Output format

Depending on the needs of the user, this processing
chain can provide several different outputs. First, an
obvious choice is to keep the original output format of
the sensor. It has the same format as what would the
sensor provide without the steering algorithm, and it
is thus transparent for the user. The only difference is
the non-uniform distribution of shots, and the variation
in the beam divergence between shots. If a more
exhaustive understanding of the environment is
expected, the whole model of the scene can be
provided (OG), as well as the list of ROIs. Finally,
virtual data can even be reconstructed from the OG in
order to provide uniform pointclouds (PCL) even in
areas where the sensor did not shoot, if such a data
structure is required by the user.

We will now describe with more details a specific
implementation of the steering algorithm developed
as a proof of concept.

3. Experimental results

The steering algorithm has been tested on an NVIDIA
Jetson Nano with 4GB of RAM. It should be noted that
the GPU is only used for the display of the data. The
algorithm itself runs exclusively on the CPU. It runs at
the same framerate as the sensor, which is 10Hz. The
primary sensor in mind when this algorithm was
developed was a solid state FMCW Lidar relying on
OPA technology for the steering. Such sensors will hit
the market of perception sensors in a few years, but
are not yet available for testing. In order to test the
capabilities of our steering algorithm with an
experimental setup, we used a non-controllable Lidar
(Ouster OS1-64). It is a rotating turret spinning at
10Hz with 64 vertical layers of laser, connected with
an RJ45 cable to the Jetson Nano. To mimic the
behaviour of a steerable Lidar, we replaced the
module that gives commands to the sensor with a
module that instead filters the data of the Lidar. The
filtered data points represent where a controllable
Lidar would have fired. This approach conveniently
allows us to calculate how many shots would be
saved compared to the traditional uniform targeting of
the rotating turret Lidar.

A webcam is used in the experiments uniquely to
improve the understanding of the displayed data; it
does not play any role in the steering algorithm.
However, it could be utilized as a companion sensor
with the help of AI algorithms to select ROIs from the
images for instance. The ROIs chosen by the steering
algorithm would then come from both the data of the
camera and the Lidar.

The ROI identification module chosen to demonstrate
the capabilities of the steering algorithm in the
experimental setup is based on the algorithm
introduced in [5]. This algorithm uses OGs as inputs
in order to estimate the motion of likely occupied cells
and detect dynamic cells. Groups of cells likely
moving together in the same direction are then
clustered. The ROIs chosen are those clusters.

The Lidar is kept immobile in the experiments
conducted. Figure 2 shows a snapshot from the
display of the experiment. A person is moving in the
scene (towards the sensor in this specific example),
and we can see the higher density of data points
targeting the moving person compared to the
surroundings. The targeting policy consists in using
the full Lidar resolution in the ROI, and 1/8 of the
points in the other areas. The ratio of the amount of
points in the filtered PCL compared to the full
resolution PCL thus varies between one 8th and one
depending on the area of the ROIs. Although this data
reduction does not save energy in the filtering setup,

[Tapez ici]

it would in the case of a steerable Lidar. This would
thus lead to a lower power consumption of the Lidar,
or a faster frame rate depending on the application
targeted.

Figure 2: Snapshot of the display of the experimental

setup. The top panel shows the filtered PCL
representing the data that a real steerable Lidar

could provide. The bottom panel shows the filtered
PCL superimposed with the image of a webcam for a
better understanding of the scene. The difference in

the density of points is clearly visible in this
representation.

4. Conclusion

We presented in this article a versatile steering
algorithm with a modular architecture that makes it
adaptable to many use cases. Thanks to the use of
OGs, the method is agnostic to the presence or
absence of companion sensors as long as their data
can be fused in an OG. Both the output format and
the ROI calculation can be adapted for each situation.
The lightweight approach of the algorithm coupled
with the fact that it can work in closed loop only with

the steerable sensor’s data makes it ideal to be
integrated in the sensor MCU itself, enhancing its
capabilities without increasing its BOM.
The experimental results shown are encouraging and
pave the way for when steerable Lidars will be
available. The control of the beam divergence was not
investigated with the current setup due to the nature
of the available Lidar but will be in future experiments,
as it is expected to bring even more flexibility to the
system.

5. Acknowledgement

The authors thank the members of the LIIM laboratory
at CEA for their constructive comments in the process
of developing the steering algorithm.

6. References

[1] J. Mottin, D. Puschini, T. Rakotovao – Patent
EP3353720 – Method and system for perceiving
physical bodies.

[2] R. Dia, F. Heitzmann, S. Lesecq, J. Mottin, D.
Puschini, T. Rakotovao – Patent EP3594719 –
Environment sensing method and apparatus using a
wide-angle distance sensor.

[3] A. Fresneau, D. Puschini – Patent Pending –
Procédé et système de perception de corps
matériels à balayage optimisé.

[4] T. Rakotovao, J. Mottin, D. Puschini, and C. Laugier,
“Multi-sensor fusion of occupancy grids based on
integer arithmetic,” in Proceedings - IEEE
International Conference on Robotics and
Automation, vol. 2016-June, 2016.

[5] T. Rakotovao – Patent EP4002274 – Iterative
method for estimating the movement of a material
body by generating a filtered movement grid.

7. Glossary

OG: Occupancy Grid

ROI: Region Of Interest

MIMO: Multiple Input Multiple Output (Radar)

API: Application Programming Interface

MCU: Micro Controller Unit

BOM: Bill Of Material

PCL: Pointcloud

GPU: Graphics Processing Unit

CPU: Central Processing Unit

RAM: Random Access Memory

FMCW: Frequency-Modulated Continuous-Wave

OPA: Optical Phased Array

AI: Artificial Intelligence

