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A B S T R A C T

Non Destructive Examination (NDE) of industrial structures requires the mod-
eling of specimen geometry echoes generated by the surfaces (entry, backwall
. . . ) of inspected blocks. For that purpose, the study of plane wave diffrac-
tion by a wedge is of great interest. The work presented here is preliminary
research to model the case of an elastic wave diffracted by a wedge in the
future, for which there exist various modeling approaches but the numerical
aspects have only been developed for wedge angles lower than π. The spectral
functions method has previously been introduced to solve the 2D diffraction
problem of an immersed elastic wedge for angles lower than π. As a first step,
the spectral functions method has been developed here for the diffraction on an
acoustic wave by a stress-free wedge, in 2D and for any wedge angle, before
studying the elastic wave diffraction from a wedge. In this method, the solu-
tion to the diffraction problem is expressed in terms of two unknown functions
called the spectral functions. These functions are computed semi-analytically,
meaning that they are the sum of two terms. One of them is determined exactly
and the other is approached numerically, using a collocation method. A suc-
cessful numerical validation of the method for all wedge angles is proposed,
by comparison with the GTD (Geometrical Theory of Diffraction) solution de-
rived from the exact Sommerfeld integral.

c© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The canonical problem of an acoustic, electromagnetic or elastodynamic plane wave diffraction by a wedge with
Neumann or Dirichlet boundary conditions is a complex mathematical problem which has been of great interest to
researchers for over a century.
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The mathematical theory of wedge diffraction was first introduced by Sommerfeld [1], who gave an analytical
expression of the exact solution of the diffraction problem of a scalar plane wave as a contour integral [2]. Macdonald
[3] has expressed the scalar solution as a series, using the variables separation technique.

The most common approximation of diffraction problems is that of far-field asymptotics (i.e. wave behavior when
kr >> 1, k being the wave number and r the observation distance). The Geometrical Theory of Diffraction (GTD) was
first proposed by Keller [4] in electromagnetics based on an asymptotic expansion of Sommerfeld’s exact solution.
Sommerfeld [1] gave an analytical formula of the GTD diffraction coefficient for an arbitrary-angled wedge (with
Neumann or Dirichlet boundary conditions) illuminated by a scalar plane wave. This wedge GTD coefficient can be
used for scalar wave diffraction both in electromagnetics [5] and in acoustics [6, 7].

In the more complex case of an elastic wave diffracted by a wedge of angle less than π, there exist two major
approaches : one is based on the Sommerfeld integral (SI) representation of the elastodynamic potentials, it was
introduced by Budaev and Bogy [8] and clarified by Kamotski et al. [9]. The other method is based on the Laplace
transform of the displacement field (LT), and was developed by Gautesen and Fradkin [10]. In the particular case of
a scattered Rayleigh wave, a method which uses the free-space Green’s tensor to express the Fourier transform of the
displacement field has been developed by Gautesen for wedge angles smaller and greater than π [11, 12]. However
the range of the wedge angle was restricted to the range [63o, 180o] for angles smaller than π and to [189o, 327o] for
angles greater than π in order to avoid numerical instabilities.

These methods are non-uniform in the sense that they lead to a solution which diverges at shadow boundaries and
caustics of the Geometric-Elastic (GE) field [6]. To overcome this difficulty, Ufimtsev [13] has introduced the Physical
Theory of Diffraction (PTD) in electromagnetics. This technique has been extended to elastic waves by Zernov et al.
[14], however it is computationally expensive. Another uniform correction of GTD is the Uniform Asymptotic Theory
(UAT), introduced by Lewis [15] in electromagnetics and acoustics and extended to elastodynamics by Achenbach et
al. [16], which gives a systematic approach for computing a uniform solution but is quite complicated to implement
for complex geometries as it requires extension of the reflected field to its shadow zone using fictitious rays [6], [17].
For practical purposes, the most used uniform correction of the GTD method is the Uniform Theory of Diffraction
(UTD) as it is computationally efficient and does not require an artificial extension of the reflected field. It was
developed in electromagnetics by Kouyoumjian and Pathak [5], using the Pauli-Clemmow method [18] and extended
to elastodynamics by Kamta Djakou et al. [19]. A comparison of different asymptotic (GTD and uniform) and exact
solutions has been carried out in elastodynamics by Aristizabal et al. [20] but for the scalar case of the 2D wedge
diffraction of a shear horizontally polarized incident wave.

For a certain time, methods of computation have been studied without proof of solvability for the wedge diffraction
problem. Osher [21, 22] has studied the well-posedness of hyperbolic initial and boundary value problems (meaning
the solution is fixed at t = 0 and on the domain boundaries) in a region with a corner (meaning a right-angled wedge)
and has given certain necessary conditions that the boundary values must verify in order for a problem to be well-
posed; he has thoroughly presented the consequences if these conditions were not verified. Huang and Temam [23]
have studied the well-posedness of hyperbolic initial and boundary value problems in a rectangular domain and have
also specified how the boundary values must be chosen for the problem to be solvable; they have also given a brief
explanation as to how their theory can be applied to wave equations.

Concerning the specific problem of wave propagation in a wedge-shaped region, Friedlander [24] has studied the
problem in the case of an incident acoustic pulse (the incident wave is non-periodical in time) and constructed the
corresponding Green’s function. Castro and Kapanadze [25] have proven existence and uniqueness of the solution
for acoustic and electromagnetic plane waves using a detailed Fredholm analysis. Kamotski and Lebeau [26] have
proven existence and uniqueness of the solution to the elastic plane wave diffraction by a soft wedge (Dirichlet bound-
ary) problem using the Spectral Functions method in which the diffracted wave is modeled thanks to these spectral
functions. Their demonstration is valid for all wedge angles but they do not propose any method of computation of
the solution. The Spectral Functions method was at first developed by Croisille and Lebeau [27] who proposed a
numerical algorithm in order to compute these functions for elastic wedges of angle lower than π immersed in a fluid.
In the current paper, wedges are of any angle (even larger than π) are taken into account, and the outside medium is
void. There is only one wave type to be considered and Dirichlet boundary conditions are supposed, as opposed to
the case studied by Croisille and Lebeau [27] where three propagation modes coupled by the boundary conditions are
considered, but only for wedge angles lower than π.

In the field of seismic diffraction, other approaches have been developed. The problem of acoustic diffraction
in a system of wedge-shaped regions was studied by Klem-Musatov [28]. Using the Malyuzhinetz transform, this



S. Chehade etal / Journal of Computational Physics (2018) 3

problem is reduced to a system of functional equations. However, this system is too complex to be solved in general
cases. A successive approximations method is proposed in the particular case of a wedge-shaped separation between
two media having the same acoustic wave velocity or in the case where the medium containing the incident wave is
a wedge of angle lower than π. In the very general case of acoustic wave propagation in a homogeneous or inhomo-
geneous medium delimited by an arbitrary-shaped boundary, a mathematical model has been rigorously presented by
Aizenberg and Ayzenberg [29], providing the analytical feasible fundamental solution for this problem. The notion
of feasible fundamental solution is a generalization of Green’s function for an unbounded medium. Ayzenberg [30]
shows how this general mathematical model can be numerically applied to the case of wedge diffraction. This method
is applied in the case of a spherical source and it appears that parallel computation is necessary to obtain a short
computation time, whereas the spectral functions method is applied here in the case of plane-wave diffraction and a
simple architecture is sufficient to obtain results for a short computation time.

The aim of this paper is to develop and implement the methodology of Croisille and Lebeau [27] in the two-
dimensional (i.e. the incident wave vector lies in the plane normal to the edge) case of an acoustic wave diffracted by
a soft wedge immersed in a fluid (Dirichlet boundary condition) and propose a numerical validation of the method for
angles both smaller and larger than π. The expansion to all wedge angles is obtained using Kamotski and Lebeau’s
[26] idea of defining a new angular variable, 2̃ϕ, defined in equation (28), thanks to which the complete resolution
and the computation of the solution are proposed and developed here for all wedge angles with a single method.
Numerical validation will be achieved by comparing the GTD approximation of the diffraction coefficient obtained
using the spectral functions method, with the analytical expression given in [6, 7] of the GTD approximation of the
exact solution.

The outline of the paper is the following: section 2. presents the problem and the diffraction coefficients are
expressed in terms of the spectral functions. The resolution of the problem is discussed in section 3. Finally, numerical
results are given in section 4. and compared to the analytical Sommerfeld solution.

2. Problem statement

Let us consider a stress-free wedge of angle 2ϕ immersed in a fluid Ω f constituted of the junction of two faces F1
and F2 (see Fig. 1). The Cartesian coordinate system (O; ex1 , ey1 ) is linked to the face F1 of the wedge and (O; ex2 , ey2 )
is linked to the face F2. These Cartesian coordinate systems have the same origin located on the wedge edge which
coincides with the z-axis. Let x = (x1, y1)(ex1 ,ey1 ) = (x2, y2)(ex2 ,ey2 ) be a position vector x = (r, 0) in a local basis of polar
coordinates associated to the Cartesian coordinates (x1, y1). The time convention used in this chapter is exp(iωt). The
wedge is thus irradiated by a velocity potential plane wave in the form

ginc(x, t) = A ei(ωt−kinc·x) (1)

where A is the amplitude of the incident velocity potential, ω is the circular frequency, t is time and

kinc = k0(− cos θinc,− sin θinc)(ex1 ,ey1 ) (2)

is the wave vector of the incident wave with k0 = ω/c0 being the wave number - c0 is the sound velocity in the
fluid. The velocity potential in the fluid g satisfies the motion equation in the fluid medium Ω f surrounding the wedge

∂2g
∂t2 − c2

0 4g = 0 (3)

and the Dirichlet boundary condition on the wedges faces

g |F j= 0, j = 1, 2. (4)

The dimensionless form of the problem is obtained by defining the function h by

g(x, t) = 2A eiωt h(k0x). (5)

The dimensionless function h is the sum of the incident dimensionless wave hinc and of the scattered dimensionless
wave v

h = hinc + v (6)
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Fig. 1: The wedge of angle 2ϕ whose faces are stress-free is illuminated by a plane wave of wave vector kinc.

In this decomposition, the scattered wave v is the sum of two fields : the Geometric-Elastodynamic (GE) field, which
is the sum of the possibly multiple specular reflections of the incident wave and of fictitious fields compensating
the incident wave in shadow zones, and the diffracted field. A detailed description of the GE field, in the case of a
half-plane scatterer, is given by Kamta-Djakou et al. [19].

The system (3)-(4) is equivalent to the following system of equations for the dimensionless problem, obtained by
inserting Fourier transform (5) and decomposition (6) into equations (3) and (4)(4 + 1)v = 0 in Ω f ,

v = −hinc on F j, j = 1, 2
. (7)

In order to obtain a solution to this problem which is physically relevant, the limiting absorption principle is used. It
consists in substituting the wave number k0 by a complex one k0e−iε with ε > 0. This means that absorption occurs in
the medium and thus the scattered waves attenuate with the distance. The system (7) then becomes :

(S ∗ε )

(4 + e−2iε)vε = 0 in Ω f ,

vε = −hεinc on F j, j = 1, 2
(8)

The physically relevant solution to (7), called the outgoing solution, can now be defined. It is the one obtained
when taking ε → 0 in (8). This limit is noted v0. Its integral representation is found hereafter.

Outgoing solution: integral representation

First, a special class of distributions is defined.

Definition 2.1. The class of distributionsA is defined as follows. The distribution f ∈ A if :

• f ∈ L2(R) (f is a tempered distribution)

• supp( f ) ⊂ [0,+∞[

• ∃C0 > 0 such that

sup
−π<θ<0

∫
ρ>C0

| f̂ (ρeiθ)|2 dρ < ∞

where f̂ is the Fourier transform of f defined by f̂ (ξ) =
∫
R f (x)e−ixξ dx.

• f̂ (ξ) is holomorphic near ξ = 1

The outgoing solution to (7) can now be defined properly.

Definition 2.2. An outgoing solution of the equation (7) is a solution v of the form

v = v1|Ω f + v2|Ω f (9)
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where, for j = 1, 2 :
v j = − lim

ε→0

(
∆ + e−2iε

)−1 [
α j ⊗ δF j

]
(10)

with α j ∈ A are unknown and where δF1 and δF2 are Dirac delta functions on the faces F1 and F2 of the wedge
respectively (these functions take value δF j (x, y) = 1 on F j, and 0 elsewhere).

The following theorem is proven by Croisille and Lebeau in [27] :

Theorem 2.1. The equation (7) admits a unique outgoing solution.

The aim of this paper is to extend and detail the computation of this outgoing solution for the stress-free wedge
immersed in a fluid using the spectral functions method.

The double Fourier transform of a tempered distribution and its inverse are defined by :

f̂ (ξ, η) =

∫ ∫
R2

f (x, y)e−i(xξ+yη) dxdy (11a)

f (x, y) =
1

4π2

∫ ∫
R2

f̂ (ξ, η)ei(xξ+yη)dξdη (11b)

The double Fourier transform of (10) using (11a) gives

v̂εj =
[
ξ2 + η2 − e−2iε

]−1
α̂ j. (12)

The dimensionless velocity potential vεj is then found by applying the inverse Fourier transform in ξ and η to (12).

vεj =
1

4π2

∫ +∞

−∞

(∫ +∞

−∞

eiy jη

ξ2 + η2 − e−2iε dη
)
α̂ j(ξ) eix jξdξ. (13)

For ε , 0, the inner integrand poles are given by

η = ±

√
e−2iε − ξ2 = ±ζε0 (14)

and are never crossed by integration along the real axis. Integral (13) can be calculated using the residue theorem
which leads to the following result

vεj(x j, y j) =
i

4π

∫ +∞

−∞

ei|y j |ζ
ε
0(ξ)eix jξ

ζε0(ξ)
α̂ j(ξ) dξ. (15)

This integral is well defined if Im(ζε0) > 0, so that the exponential in the integral decreases with the distance y j and
the absorption principle is respected. Function ζε0(ξ) then satisfies for ξ real

ζε0(ξ) = i
√
ξ2 − e−iε if |ξ| ≥ 1, (16a)

ζε0(ξ) = −

√
e−iε − ξ2 if |ξ| ≤ 1. (16b)

The branch points of the function ζε0(ξ) are ± e−iε . For ε > 0, integral (15) is well defined because these complex
singular points are never crossed by the integration contour (the real axis). The integration contour of (15), is deformed
into the contour Γ0 illustrated on Fig. 2 so that these singular points ± e−iε are not crossed by the new contour Γ0 when
ε → 0 (for which the physical outgoing solution of (8) is obtained). Arrows F1 and F2 on Fig. 2 are described later in
section 3.2.2.

Thus, even for ε = 0, the integral

v0
j (x j, y j) =

i
4π

∫
Γ0

ei|y j |ζ
0
0 (ξ)eix jξ

ζ0
0 (ξ)

α̂ j(ξ) dξ (17)

converges. Using (9), our initial solution is then

v(x) = v0
1(x1, y1) + v0

2(x2, y2) (18)

One of the goals of this paper is to compute the spectral functions α̂1(ξ) and α̂2(ξ) in order to find the GTD
diffraction coefficient (92). The accuracy of the spectral functions method is evaluated in section 4 by comparing
results of (92) with (97). Section 3 is devoted to the computation of the spectral functions α̂1 and α̂2.
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Fig. 2: Integration contour Γ0 in the complex plane ξ = σ + iτ. Arrows F1 and F2 show the deformation of Γ0 into the imaginary axis.

3. Spectral functions computation

To compute the spectral functions, the functional equations satisfied by spectral functions α̂1 and α̂2 first have to
be determined.

3.1. Functional equations of spectral functions

The velocity potential in the boundary conditions of the system (8) is substituted by its expression (18). It then
leads to the following system of equations for the boundary conditions on each wedge face:v0

1(x1, 0) + v0
2(x2 cos 2ϕ, x2 sin 2ϕ) = −v0

inc |F1

v0
1(x1 cos 2ϕ, x1 sin 2ϕ) + v0

2(x2, 0) = −v0
inc |F2

. (19)

The Fourier transform is applied to the potential velocity expression on the face of each wedge

F (x j 7→ v0
j (x j, 0))(ξ) =

i
4π

∫
Γ0

α̂ j(λ)

ζ0
0 (λ)

(∫ ∞

0
e−ix j(ξ−λ)dx j

)
dλ, (20)

=
1

4π

∫
Γ0

α̂ j(λ)

ζ0
0 (λ)(ξ − λ)

dλ

and

F
(
x j 7→ v0

j

(
x j cos 2ϕ, x j sin 2ϕ

))
(ξ) =

i
4π

∫
Γ0

α̂ j(λ)

ζ0
0 (λ)

(∫ ∞

0
e−ix j(ξ−λ cos 2ϕ−| sin 2ϕ| ζ0

0 (λ))dx j

)
dλ, (21)

=
1

4π

∫
Γ0

α̂ j(λ)

ζ0
0 (λ)

[
ξ − λ cos 2ϕ − | sin 2ϕ| ζ0

0 (λ)
]dλ.

The dimensionless incident wave on the faces F1 and F2 of the wedge which is involved at the right side of (19)
is respectively:

v0
inc(x1, 0) =

1
2

ei x1 cos θinc , (22a)

v0
inc(x2, 0) =

1
2

ei x2 cos(2ϕ−θinc). (22b)

Therefore, applying the Fourier transform to (19) leads to the following functional system of equations:
DM(α̂1)(ξ) + T M(α̂2)(ξ) =

1
ξ − Z1

T M(α̂1)(ξ) + DM(α̂2)(ξ) =
1

ξ − Z2

(23)

where Z1 = cos θinc, Z2 = cos(2ϕ − θinc). DM is an integral operator defined as

DM(α̂1)(ξ) =

∫
Γ0

DM(ξ, λ) α̂1(λ) dλ =
1

2iπ

∫
Γ0

m(λ)
ξ − λ

α̂1(λ) dλ (24)
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where m(λ) =
1

ζ0
0 (λ)

and T M is also an integral operator defined as

T M(α̂1)(ξ) =

∫
Γ0

T M(ξ, λ) α̂1(λ) dλ =
1

2iπ

∫
Γ0

m(λ)
ξ − λ cos 2ϕ − | sin 2ϕ|ζ0

0 (λ)
α̂1(λ) dλ (25)

Note that the function T M can be expressed as

T M(ξ, λ) =
1

2iπ
m(λ)

ξ − T0(λ)
, (26)

where, applying the variable change λ = cos θ

T0(λ = cos θ) = λ cos 2̃ϕ + sin 2̃ϕ ζ0
0 (λ) = cos(θ + 2̃ϕ) (27)

with

2̃ϕ =

2ϕ if 0 < 2ϕ < π
2π − 2ϕ if π < 2ϕ < 2π

(28)

By using this angular variable, defined differently for wedge angles lower and higher than π, the description of the
spectral functions method can be written the same way for wedge angles lower and higher than π, even if the final
results (the diffraction coefficients) are different for wedge angles π < 2ϕ < 2π and 2π − 2ϕ. Indeed, the variable 2ϕ
appears in all the resolution, whereas the variable 2̃ϕ appears only in the definition of the function T0 in (27) and of
the domain Ω0 in which T0 operates, defined as

Ω0 = {ξ ∈ C, ξ = cos θ, 0 < Re θ < π − 2̃ϕ}. (29)

Domain Ω0 is delineated by the hyperbola

∂Ω+
0 = {ξ ∈ C, ξ = cos θ,Re θ = π − 2̃ϕ}. (30)

Domain Ω0 and its upper boundary ∂Ω+
0 are illustrated on Fig. 3. Domain Ω0 is the dotted area in Fig. 3. Arrows F1

and F2 on Fig. 3 are described later in section 3.2.

×
1

×
−1Γ0 σ

τ

F1

F2

∂Ω+
0

− cos 2̃ϕ

Ω0

Fig. 3: Domain Ω0 (the dotted area) and its upper boundary ∂Ω+
0 . The lower boundary of Ω0 is the semi-axis [− cos 2̃ϕ,+∞[. Arrows F1 and F2

show the deformation of Γ0 (in thick dashed line) into ∂Ω+
0 .

Having found the system of functional equations, it is now resolved following the methodology of [27].

3.2. System resolution

The resolution of the system of functional equations (23) is necessary in order to find the values of the spectral
functions α̂1 and α̂2. With these values, the diffraction coefficients can be computed [see Eq. (92)].
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It is shown in [27] that DM and T M integral operators are constituted of a ”singular term” and of a ”regular term”.
For a singular function

φ(ξ) =
1

ξ − z
, z ∈ C\] −∞,−1] with Im z > 0, (31)

DM and T M integral operators defined respectively in (24) and (25) can be decomposed using the residue theorem as

DM(φ)(ξ) =

∫
Γ0

DM(ξ, λ) ·
1

λ − z
dλ =

m(z)
ξ − z

+ Dp(ξ, z) (32a)

T M(φ)(ξ) =

∫
Γ0

T M(ξ, λ) ·
1

λ − z
dλ =

m(z)
ξ − T0(z)

1(z ∈ Ω0) + Tp(ξ, z), (32b)

where the function T0 is defined in (27) and where

1(z ∈ Ω0) =

1 if z ∈ Ω0,

0 else
(33)

and integrals Dp and Tp are holomorphic on C\] −∞,−1]. Such integrals are expressed as

Dp(ξ, z) =
1

2πi

∫
Γ1

m(λ)
ξ − λ

·
1

λ − z
dλ, (34a)

Tp(ξ, z) =
1

2πi

∫
∂Ω+

0

m(λ)
ξ − T0(λ)

·
1

λ − z
dλ. (34b)

Contours Γ1 and ∂Ω+
0 are illustrated on Figs. 4 and 3 respectively.

×

0
×

1
×
−1

Γ1

σ

τ

(Γ0)

F2

Fig. 4: Contour Γ1. Arrow F2 shows the deformation of Γ0 (in dashed line) into Γ1.

In the sequel, using the decomposition of the DM and T M operators for a function of the form of (31), it will be
shown that the unknown spectral functions α̂1 and α̂2 in the system (23) have a singular part. The first step for the
resolution of the system (23) is then to determine this singular part.

3.2.1. Singular part
It is well known that poles of the spectral functions lead to the reflections of the incident field on the wedge

faces (these reflections can be multiple), and to the fictitious fields that compensate the incident wave in the shadow
zones. The sum of these reflections with the fictitious compensating fields constitute the aforementioned GE field.
The singular part of the spectral functions contains these poles. The goal of this subsection is to calculate the poles
and the corresponding residues and then to determine the expression of the singular part of the spectral functions, by
employing a recursive algorithm.

Knowing the incident field on the wedge faces, the spectral function α̂ j can be written as

α̂ j(ξ) =
V j

ξ − Z j
+ X′j(ξ), j = 1, 2 (35)

where Z1,Z2 are the initial poles, given in (23) with unknown residues V1 and V2 and the functions X′j are unknown,
j = 1, 2. From (32a), it is known that

DM(α̂ j)(ξ) =
m(Z j) · V j

ξ − Z j
+ Dp(ξ,Z j) · V j + DM(X′j)(ξ). (36)
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By choosing V j = m−1(Z j), the right hand side of the system (23) is suppressed by the first term in the right hand side
of (36). The resulting system’s unknown functions are X′j, j = 1, 2 :

DM(X′j)(ξ) + T M(X′3− j)(ξ) = −T M
(

V3− j

ξ − Z3− j

)
(ξ) − Dp(V j,Z j)(ξ) j = 1, 2 (37)

Besides, from (32b), we know that

T M
(

V j

ξ − Z j

)
(ξ) =

m(Z j) · V j

ξ − T0(Z j)
1(Z j ∈ Ω0) + Tp(ξ,Z j) · V j j = 1, 2 (38)

Thus, X′j has a pole at ξ = Z2
j = T0(Z3− j) if Z3− j ∈ Ω0. T0 function defined in (27) is then called translation operator

because it translates a pole of the spectral function α̂ j, j = 1, 2, to a pole of the spectral function α̂3− j. The wave
incident on face F3− j is reflected. This reflected wave is incident on face F j, generating a new pole Z2

j = T0(Z3− j).
The unknown function X′j in (35) is then decomposed as

X′j(ξ) =
V2

j

ξ − Z2
j

+ X′′j (ξ), j = 1, 2 (39)

where the function X′′j is unknown. Once again, the residues V2
j of these generated poles Z2

j are chosen so that
they cancel the singular term DM(X′j)(ξ), found using the formula (32a), compensating the singular term in the T M
operator in (38).

This pole propagation process is applied recursively in order to determine all the poles of the spectral functions
α̂ j. This process stops when the generated poles are no longer in the domain Ω0 defined in (29). All the generated
poles then belong to Ω0∪] − cos 2̃ϕ,+∞]. Their imaginary part is then always positive due to the definition of the
domain Ω0 (see Fig. 3).

At the end of this process, spectral functions have the decomposition

α̂ j = Y j + X j, (40)

where Y j is the singular part, X j is the regular part and j = 1, 2 is the face index. The singular part is expressed as

Y j(ξ) =
∑

i

V i
j

ξ − Zi
j

, (41)

where i ∈ N∗, Z1
j = Z j defined in (23) is the initial pole on each face of the wedge,

Zi+1
j = T0(Zi

k), j, k ∈ {1, 2}, k , j (42)

are the different generated poles with their respective residue

V i+1
j = −m−1(T0(Zi

k)) m(Zi
k)) V i

k 1(Zi
k ∈ Ω0), k , j. (43)

. Figure 5 represents the generated poles in the complex plane for two different cases : figure 5a for a wedge of angle
ϕ = 80o with an incident angle of θinc = 55o and figure 5b for ϕ = 20o and θinc = 15o. As the wedge angle decreases,
the number of poles increases, some poles being very close to one another, rendering the method less accurate for
very small wedge angles.

The second step of the system resolution is the determination of the regular part X j of the spectral function α̂ j [see
Eq. (40)]. The regular part is determined by using the Galerkin collocation method. Section 3.2.2 gives the principal
steps of this resolution method.

3.2.2. Regular part
After the determination of the singular part of the solution using the pole propagation process explained in section

3.2.1, the remaining right hand side of (23) is composed of Dp and Tp functions. Thus, the system 23 becomes by
construction 

DM(X1)(ξ) + T M(X2)(ξ) = −
∑
k

(
Dp(ξ,Zk

1) · Vk
1 + Tp(ξ,Zk

2) · Vk
2

)
T M(X1)(ξ) + DM(X2)(ξ) = −

∑
k

(
Tp(ξ,Zk

1) · Vk
1 + Dp(ξ,Zk

2) · Vk
2

) (44)
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Fig. 5: Generated poles plotted in the complex plane

where X j, j = 1, 2 are the regular parts of the spectral functions (40), Dp and Tp functions are defined in (34) and
Zk

j are the poles of the spectral function α̂ j with their respective residue Vk
j . Dp and Tp are holomorphic functions on

C\] −∞,−1] according to [27], and therefore the functions X j are also holomorphic on this domain.
The functions X j(ξ), being holomorphic on C\] − ∞,−1], can be approximated in the basis ϕk, 1 ≤ k ≤ N given

by

ϕk(ξ) =
dk

ξ + ak
, ak ∈ [1,∞[, dk =

√
ak

π
. (45)

The discretization of the solution X j(ξ) in this finite basis is called a Galerkin approximation.
In the following, the integration contour Γ0 pictured on Fig. 2 is deformed into the imaginary axis. If f (λ) is a

holomorphic function on C\]−∞,−1], the function f̃ (y) = f (iy) is introduced so that f̃ is holomorphic on C \ i[1,∞[.
The variable change λ = iy gives a new basis

eak (y) =
dk

y − iak
= iϕ̃(y), with dk =

√
ak

π
and ak ∈ [1,∞[, (46)

Having an approximation basis of the regular part of the spectral functions, X j(ξ) can be expressed as

X j(ξ) ≈
N∑

k=1

X̃k
j ϕk(ξ), X̃k

j ∈ C. (47)

The coordinates X̃k
j are unknown. The system (44) then becomes, for j = 1, 2

N∑
k=1

[
X̃k

j

∫
Γ0

DM(ξ, λ)ϕk(λ) dλ + X̃k
3− j

∫
Γ0

T M(ξ, λ)ϕk(λ) dλ
]

= u j(ξ), (48)

where
u j(ξ) = −

∑
k

(
Dp(ξ,Zk

j ) · V
k
j + Tp(ξ,Zk

3− j) · V
k
3− j

)
j = 1, 2 (49)

The variable changes λ = iy and ξ = ix in (48) lead to the following system ( j = 1, 2)

N∑
k=1

[
X̃k

j

∫ ∞

−∞

D̃M(x, iy) eak (y)dy + X̃k
3− j

∫ ∞

−∞

T̃ M(x, iy) eak (y)dy
]

= ũ j(x) (50)

where D̃M(x, iy) = DM(ix, iy) and T̃ M(x, iy) = T M(ix, iy). Following [27], we introduce another subspace of finite
dimension in L2(R) which is generated by vectors ebk with

ebk (y) =
dk

y − ibk
, Re(bk) ∈ [1,∞[ and Im(bk) = 0−. (51)

The bk are called collocation points. The system (50) is projected in this subspace using the following relation :

(φ̃|ebk )L2(R) = (−2iπ) dk φ(bk) (52)
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Using (52), the projection of the system (50) leads to the following new systems (for j = 1, 2)
∑N

k=1

[
X̃k

j

∫ ∞
−∞

DM(b1, iy)eak (y) dy + X̃k
3− j

∫ ∞
−∞

T M(b1, iy)eak (y) dy
]

= u j(b1)
...∑N

k=1

[
X̃k

j

∫ ∞
−∞

DM(bN , iy)eak (y) dy + X̃k
3− j

∫ ∞
−∞

T M(bN , iy)eak (y) dy
]

= u j(bN)

(53)

The obtained system (53) is a linear system of equations and can be put in a matrix format:[
[D] [T ]
[T ] [D]

] [
X̄1
X̄2

]
=

[
U1
U2

]
(54)

where

X̄ j =


X̃1

j
...

X̃N
j

 , X̃k
j ∈ C; U j =


u j(b1)
...

u j(bN)

 , u j(bk) ∈ C (55)

and

[D]lk =

∫ ∞

−∞

DM(bl, iy)eak (y) dy (56)

[T ]lk =

∫ ∞

−∞

T M(bl, iy)eak (y) dy (57)

are the matrix elements of [D] and [T ] respectively. System (54) can be rewritten as([D] + [T ]) (X̄1 + X̄2) = U1 + U2

([D] − [T ]) (X̄1 − X̄2) = U1 − U2
. (58)

To find the regular part of the spectral functions (47), its coordinates X̃k
j in the Galerkin basis ϕk, 1 ≤ k ≤ N defined

in (45) must be determined. These coordinates are solutions of the linear system of equations (54) or (58). To resolve
such a system, the matrices [D] and [T ] and its right hand side U1,2 must be calculated.

Matrices calculation
The first step is to determine [D] and [T ] matrices. Using (24) and (46), the [D]lk elements defined in (56) can be

expressed as
(−2iπ)[D]lk = −idkD(ak, bl) (59)

with the functionD(a, b) defined for a > 1 and b > 1 as

D(a, b) =

∫ +∞

−∞

m(iy)
y + ib

1
y − ia

dy =

∫ +∞

−∞

1
y + ib

1
y − ia

1
ζ0

0 (iy)
dy. (60)

Using (25) and (46) the [T ]lk elements defined in (57) can be expressed as

(−2iπ)[T ]lk = −dkT (ak, bl) (61)

where the function T (a, b) is defined for a > 1 and b > 1 as

T (a, b) =

∫ +∞

−∞

1

b − iy cos 2ϕ + | sin 2ϕ|
√

1 + y2

1
y − ia

1
ζ0

0 (iy)
dy. (62)

According to (16),D(a, b) and T (a, b) functions can be simplified using the relation

ζ0
0 (iy) = −

√
1 + y2. (63)
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The function T (a, b) is first calculated. The variable change

y =
2x

1 − x2 ;
1 + x2

1 − x2 =

√
1 + y2; dy = 2

x2 + 1(
1 − x2)2 dx (64)

is applied to (62) :

T (a, b) = 2
∫ 1

−1

x2 − 1
b (1 − x2) − 2ix cos 2ϕ + | sin 2ϕ|(1 + x2)

1
2x − ia(1 − x2)

dx (65)

Let us define the polynomial functions P(x) and Q(x) as

P(x) =b(1 − x2) − 2ix cos 2ϕ + | sin 2ϕ|(1 + x2), (66)

Q(x) =2x − ia(1 − x2). (67)

The integrand of the T (a, b) function (65) is a rational function which can be decomposed in the partial fraction :

−1 + x2

PQ
=
γx + δ

P
+
αx + β

Q
(68)

as long as 4 , 0, with
4 = a2 + b2 + 2ab cosϕ − (sinϕ)2 , 0 (69)

Using this partial fraction decomposition, T (a, b) function (65) can be written as

T (a, b) = 2
∫ 1

−1

(
γx + δ

P(x)
+
αx + β

Q(x)

)
dx, (70)

It is shown in appendix Appendix A that∫ 1

−1

αx + β

Q(x)
dx = αsog(a) + iβ rog(a) (71)

and that ∫ 1

−1

γx + δ

P(x)
dx =

iγ

b − sin 2̃ϕ

[(
π

2
− 2̃ϕ

)
− cos 2̃ϕ rog(b)

]
+ δ rog(b). (72)

where rog and sog are defined in appendix Appendix A. Finally, using (71), (72) and (70),

T (a, b) = 2 [T1(a, b) + T2(a, b)] (73)

with

T1(a, b) = α sog(a) + iβ rog(a), (74a)

T2(a, b) =
iγ

b − sin 2̃ϕ

[(
π

2
− 2̃ϕ

)
− cos 2̃ϕ rog(b)

]
+ δ rog(b). (74b)

IntegralD(a, b) given in (60) can then be rewritten, using a partial fraction decomposition, as

D(a, b) =
i

b + a

∫ +∞

−∞

 1
y − ia

1√
1 + y2

−
1

y + ib
1√

1 + y2

 dy, if a + b , 0. (75)

Using the variable change (64), we have for a ≥ 1,∫
R

1
y − ia

1√
1 + y2

dy = 2i
∫ 1

−1

1
a(1 − x2) + 2ix

dx = 2i rog(a) (76)
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and for b ≥ 1 ∫
R

1
y + ib

1√
1 + y2

dy =

∫
R

1
y − ib

1√
1 + y2

dy = 2irog(b) = −2i rog(b). (77)

From (76) and (77), Eq. (75) reduces to

D(a, b) =
−2

a + b
[
rog(a) + rog(b)

]
. (78)

The matrices [D] and [T ] are now completely determined using (59) and (61) respectively. Their analytical
properties are also known. In order to resolve the linear system of equations (54) or (58), their right hand side
constituted of U1 and U2 must also be computed.

Determination of the right hand side of the system of equations
Using (49), the right hand side of the system (53) which is calculated at the collocation points bl defined in (51),

l ∈ {1, 2, . . . ,N}, is
u j(bl) = −

∑
k

(
Dp(bl,Zk

j ) · V
k
j + Tp(bl,Zk

3− j) · V
k
3− j

)
j = 1, 2 (79)

where Dp and Tp functions are defined in (32) and Zk
j is defined in (42), k ∈ N∗.

Taking the definition of the Dp function in (32a), and deforming the contour Γ0 pictured on Fig. 2 into the imagi-
nary axis by applying the variable change λ = iy, we get

Dp(bl, z) =
1

2π
D(−z, bl) −

m(z)
bl − z

. (80)

Similarly, using the definition of the Tp function given in (32b), and by deforming the integrand contour Γ0
pictured on Fig. 2 into the imaginary axis by applying the variable change λ = iy we have

Tp(bl, z) =
1

2iπ
T (−z, bl) −

m(z)
bl − T0(z)

1(z ∈ Ω0). (81)

Expressions (80) of Dp and (81) of Tp functions are incorporated in the right hand side of the system (79) with
z = Zk

j for each u j(bl), j = 1, 2. In this new expression, with the pole propagation process explained in section 3.2.1,
singular terms of Dp and Tp functions cancel each other. The remaining term in the right hand side of the system (79)
is therefore, for j = 1, 2; l ∈ {1, 2, . . . ,N}

(2πi) u j(bl) = −
∑

k

(
iD(−Zk

j , bl) · Vk
j + T (−Zk

3− j, bl) · Vk
3− j

)
+

2πi
bl − Z j

(82)

Once all matrix terms have been calculated, system (54) is resolved numerically. For that, the NAG numeric
subroutine library for Fortran is used. With the resolution of this linear system of equations, the coordinates X̃k

j of the
regular term X j of the spectral functions are known and therefore the regular term X j is approximated using (47). The
spectral functions α̂ j are then completely determined using (40), (41) and (47).

3.3. Propagation of the solution

The regular part approximation described previously is not accurate in the entire complex plane. There exists a
procedure, called ”propagation of the solution” and explained in [27], which allows to propagate the accuracy of the
regular part X j(ξ) of the spectral functions from ξ < Ω−0 , Im(ξ) < 0 where the approximation is valid to the domain
Ω−0 where it is not. The space Ω−0 defined by

Ω−0 = {ξ ∈ C, Im(ξ) < 0, ξ = cos(θ), 2̃ϕ < Re(θ) < π} (83)

is represented in Fig. 7. The procedure consists in deriving new recursive equations by deforming the contour Γ0 in
the integrals of the right-hand side of (44) into a new contour Γ2 and taking into account the poles crossed in the
process.
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×
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×
1

×
−1 Γ2Γ0
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Fig. 6: Contour Γ2. Arrow F1 shows the deformation of Γ0 into Γ2.

To begin, the contour Γ0 in the DM integral operator is deformed into Γ2. The half-space {λ, Im λ < 0} is then
crossed during this contour deformation as shown by the F1 arrow on Fig. 6.

During this contour deformation, only the poles

λ = ξ, with Im(ξ) < 0 (84)

of the DM function (24) are crossed and therefore, applying the residue theorem, we have for ξ ∈ C, Im(ξ) < 0,
j = 1, 2,

DM(X j)(ξ) =

∫
Γ0

DM(ξ, λ)X j(λ) dλ =

∫
Γ2

DM(ξ, λ)X j(λ) dλ + m(ξ)X j(ξ). (85)

The poles of the T M function (25) are

λ = T−1
0 (ξ) = ξ cos 2̃ϕ − sin 2̃ϕ ζ0(ξ) = cos(θ − 2̃ϕ) if ξ = cos θ

T−1
0 operates in the domain Ω−0 , therefore they are crossed during this contour deformation if and only if ξ ∈ Ω−0 (see

dotted area on Fig. 7). The domain Ω−0 is delineated by the hyperbola

∂Ω−0 = {ξ ∈ C, Im(ξ) < 0, ξ = cos θ,Re θ = 2̃ϕ}. (86)

Domain Ω−0 and contour ∂Ω−0 are illustrated on Fig. 7.
Applying the residue theorem to the T M integral operator then gives for ξ ∈ C, Im(ξ) < 0, j = 1, 2,

T M(X j)(ξ) =

∫
Γ0

T M(ξ, λ)X j(λ) dλ =

∫
Γ2

T M(ξ, λ)X j(λ) dλ + m(ξ) X j[T−1
0 (ξ)]1(ξ ∈ Ω−0 ) (87)

σ

τ

×
1

×
−1

∂Ω−0

cos 2̃ϕ

Ω−0

recursive evaluation

direct evaluation
(ξ < Ω−0 )

Fig. 7: Domain Ω−0 and its lower boundary ∂Ω−0 in the complex plane ξ = σ + iτ. Ω−0 is delimited by ∂Ω−0 andthe semi-axis ] −∞, cos 2̃ϕ].
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Using (85) and (87) in the system of functional equations (44), the system (44) is then equivalent to this new
system for ξ ∈ C, Im(ξ) < 0: 

X1(ξ) = g1(ξ) − X2(T−1
0 (ξ)) 1(ξ ∈ Ω−0 )

X2(ξ) = g2(ξ) − X1(T−1
0 (ξ)) 1(ξ ∈ Ω−0 )

(88)

where

g j(ξ) = m(ξ)−1
[
u j(ξ) −

∫
Γ2

DM(ξ, λ) X j(λ) dλ −
∫

Γ2

T M(ξ, λ) X3− j(λ) dλ
]

(89)

Formula (88) is called the recursive formula because it uses the value of the regular function X2 at point T−1
0 (ξ) to

compute the value of X1 at the point ξ where the approximation is not valid (and vice-versa). If the translation from ξ
to T−1

0 (ξ) is not sufficient to reach the domain C\Ω−0 where the approximation is valid, then the use of the formula is
repeated as many times as necessary (computing X2(T−1

0 (ξ)) using the value of X1(T−2
0 (ξ)), etc.).

To calculate g j functions, we need to compute∫
Γ2

DM(ξ, λ) X j(λ)dλ =
∑

k

X̃k
j

∫
Γ2

DM(ξ, λ)ϕk(λ) dλ

and ∫
Γ2

T M(ξ, λ) X j(λ)dλ =
∑

k

X̃k
j

∫
Γ2

T M(ξ, λ)ϕk(λ) dλ

If Im(a) < 0, the residue theorem combined with the variable change λ = iy yields∫
Γ2

DM(ξ, λ)
1

λ + a
dλ =

1
2π
D(a, ξ) −

m(ξ)
ξ + a

= ND(a, ξ). (90)

For the T M contributions, the poles λ = T−1
0 (ξ) are taken into account if and only if ξ ∈ Ω−0 . Thus, for ξ ∈ Ω−0 ,

Im(a) < 0, the residue theorem combined with the variable change λ = iy gives∫
Γ2

T M(ξ, λ)
1

λ + a
dλ =

1
2iπ
T (a, ξ) −

m(ξ)
T−0 (ξ) + a

= NT (a, ξ) (91)

Formula (47) finally leads to, for ξ ∈ Ω−0 and j = 1, 2,

m(ξ) g j(ξ) − u j(ξ) = −
(∑

k

X̃k
j dk ND(ak, ξ) +

∑
k

X̃k
3− j dk NT (ak, ξ)

)
Some numerical results are presented in the sequel.

4. Numerical results

In this section, a far-field (k0r >> 1) asymptotic evaluation of the diffraction coefficient is computed using the
stationary phase method :

D(θ) =
e−i π4
√

2π
[α̂1(− cos θ) + α̂2(− cos(2ϕ − θ))] (92)

where α̂1 and α̂2 are the spectral functions, is compared to the analytic expression of the diffraction coefficient of the
scattering of a plane wave with a wedge at interfaces fluid/void as expressed by Sommerfeld [1]. Keller [4] gives an
analytical expression of the GTD approximation of the coefficient in the case of the diffraction of a scalar plane wave
by a wedge with Dirichlet boundaries which can be used in the case of a stress-free wedge immersed in a fluid :

D(Dir)(θ) =
ei π4

2N
√

2π

[
cot

(
π + (θ + θinc)

2N

)
+ cot

(
π − (θ + θinc)

2N

)
− cot

(
π + (θ − θinc)

2N

)
− cot

(
π − (θ − θinc)

2N

)]
, (93)
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with N = 2ϕ/π.
To apply the recursive procedure described in 3.3, calculation points ξ must have a negative imaginary part. The

calculation points considered are then

ξ1 = − cos θ − i 10−3 and ξ2 = − cos(2ϕ − θ) − i 10−3, (94)

where θ is the observation angle in the wedge (see Fig. 1).
For the Galerkin basis defined in (46), the parameters ak ∈ [1,∞[ are chosen as an exponential law [27]:

ak = 1.1 + 0.05
(
10

k−1
4 − 1

)
, 1 ≤ k ≤ 20

bk = ak − i0.1, 1 ≤ k ≤ 20.
(95)

The module of the diffraction coefficients computed using spectral functions and Sommerfeld integral method for
various wedge angles are plotted in terms of the observation angle θ, 0 ≤ θ ≤ 2ϕ and presented on Fig. 8.
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Fig. 8: Diffraction coefficient computed with the spectral functions and with the Sommerfeld method, in the case of Dirichlet boundary conditions.

In the case of Neumann boundary conditions, the initial system (7) is replaced by the follwing :(4 + 1)v = 0 in Ω f ,

∂v/∂n = −∂hinc/∂n on F j, j = 1, 2
, (96)

where n is the inward-pointing normal to the wedge faces. The spectral functions method can once again be applied
following the same steps as for the Dirichlet boundary conditions. The details of the computation are not repeated
here. Once again, a far-field evaluation of the diffraction, given by (92) is compared to the analytic expression of the
diffraction coefficient given by Sommerfeld [1]. The GTD approximation of this coefficient is also given by Keller
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[4] :

D(Neu)(θ) =
ei π4

2N
√

2π

[
cot

(
π + (θ + θinc)

2N

)
+ cot

(
π − (θ + θinc)

2N

)
+ cot

(
π + (θ − θinc)

2N

)
+ cot

(
π − (θ − θinc)

2N

)]
(97)

with N = 2ϕ/π. The results are presented on Fig 9.
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Fig. 9: Diffraction coefficient computed with the spectral functions and with the Sommerfeld method, in the case of Neumann boundary conditions.

In each of these figures, the continuous light blue line represents the modules of the diffraction coefficients ob-
tained using the Sommerfeld integral method, the continuous dark blue line represents those obtained using the Spec-
tral function singular part Y j alone, the short-dashed green line represents those obtained using the Spectral functions
method without propagation of the solution and the red circles represent those obtained using the spectral functions
method with propagation of the solution described in paragraph 3.3.

On Figs. 8a, 8b, 9a and 9b the wedge angles are lower than π and on figs. 8d, 8c, 9d and 9c the wedge angles are
greater than π. In all cases, it appears clearly that both the regular part of the solution and the recursive method are
necessary to obtain optimal results. When both of these are included, diffraction coefficients obtained with Spectral
functions are close to those of the Sommerfeld method. In addition, the run time to evaluate the diffraction coefficients
in 250 different observation points, in each of the presented configurations, using an Intel(R) Xeon(R) CPU E3-1240
v3 is under 0.1 seconds for both methods.

5. Conclusion

The spectral functions method is shown here to model diffraction of an acoustic wave from stress-free wedges.
The diffraction coefficient obtained using the spectral functions has been compared to the analytic one obtained
from the asymptotic evaluation of the Sommerfeld integral. The numerical results obtained thanks to the spectral
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functions method are very close to those given by the analytical solution and a precise result is obtained at a very
low computational cost. The acoustic wave diffraction by a wedge with Neumann boundary conditions has also
been modeled and successfully validated. The spectral functions method may be extended to more complex wedge
diffraction cases such as elastic wave diffraction. In these cases, studies may be carried out to numerically calculate
corresponding diffraction coefficients for all wedge angles with a good precision and a low computation time.

Appendix A. Calculation details of integrals in section 3.2.2

Appendix A.1. Definition of rog and sog complex functions

Let us introduce rog(a) and sog(a) complex functions defined as

rog(a) =

∫ 1

−1

1
a(1 − x2) + 2ix

dx, (A.1)

sog(a) =
1
a

(
π

2
− rog(a)

)
(A.2)

These functions are used in the sequel to express T (a, b) [see Eq. (70)] and D(a, b) [see Eq. (60)] functions. Their
analytic properties are given hereafter.

Lemma Appendix A.1. The function rog(a) defined for a > 1 by

rog(a) =

∫ 1

−1

1
a(1 − x2) + 2ix

dx

is holomorphic on C \ {−1} and has the following property :
For x , ±1,

rog(a) =
1

√
a2 − 1

ln(a +
√

a2 − 1) (A.3)

Proof The roots of the polynomial a(1− x2)+2ix, a ∈ C∗ are x± = 1
a (i±

√
a2 − 1). When a < {−1, 0, 1}, these roots

are distinct and formula (A.3) results from a classical integral computation. When a = 0, both formulations (A.1) and
(A.3) give rog(0) = π

2 and no singularity arises. However, when a = 1, (A.1) yields rog(1) = 1 whereas (A.3) presents
a singularity. The indetermination is lifted by defining z =

√
1 − 1/a2 in (A.3). We then have :

rog(a) =
1

2az
ln

(
1 + z
1 − z

)
(A.4)

The Taylor series expansion at z = 0 leads to rog(1) = 1. The rog function can therefore be extended to C \ {−1}.

Lemma Appendix A.2. The function sog(x) defined in (A.2) for x > 1 is holomorphic on C \ {−1}.

Proof sog function defined in (A.2) depends on the rog function which is holomorphic on C\]−∞,−1]. To remove
the indetermination near x = 0, let us define y =

(
1 − x2

)1/2
. We then have x = −i

(
y2 − 1

)1/2
using the same definition

of the square root as in (16b). Thus,

sog(x) = −
π

2
x

y(y + 1)
+

1
y

rog(y) with y→ 1 (A.5)

Knowing the analytic properties of functions rog and sog, we can now calculate the integrals T (a, b) (70) and
D(a, b) (60).
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Appendix A.2. Partial fractions integration
Integrals to calculate in the subsection ”matrix calculation” of section 3.2.2 are in the following form:

I1 =

∫ 1

−1

αx + β

Q(x)
dx (A.6)

and

I2 =

∫ 1

−1

γx + δ

P(x)
dx (A.7)

with polynomial functions P(x) and Q(x) defined in (66) and (67) respectively.
Let us first calculate integral I1.

I1 =

∫ 1

−1

αx + β

iax2 + 2x − ia
dx

=
α

2ia

∫ 1

−1

2(iax + 1)
iax2 + 2x − ia

dx +

∫ 1

−1

β −
α

ia
iax2 + 2x − ia

dx

=
πα

2a
+

(
β

ia
+
α

a2

) ∫ 1

−1

1
x2 + 2

ia x − 1
dx

I1 =α sog(a) + iβ rog(a) (A.8)

with rog and sog functions being defined in (A.1) and (A.2) respectively.
Now let us calculate integral I2, supposing b , | sin 2ϕ|.

I2 =

∫ 1

−1

γx + δ

b(1 − x2) − 2ix cos 2ϕ + | sin 2ϕ|(1 + x2)
dx

=
1

2(| sin 2ϕ| − b)

∫ 1

−1

2γ
[(
| sin 2ϕ| − b

)
x − i cos 2ϕ

]
+ 2

[
iγ cos 2ϕ + δ

(
| sin 2ϕ| − b

)]
x2(| sin 2ϕ| − b) − 2ix cos 2ϕ + (b + | sin 2ϕ|)

dx

=
iγ

| sin 2ϕ| − b

(
2̃ϕ −

π

2

)
+

1
| sin 2ϕ| − b

(
δ + γ

i cos 2ϕ
| sin 2ϕ| − b

)
I3

where

I3 =

∫ 1

−1

1(
x −

i cosϕ
| sin 2ϕ| − b

)2

−
b2 − 1

(| sin 2ϕ| − b)2

dt. (A.9)

We need to determine I3 to access the value of I2.

I3 =

∫ 1

−1

1(
x −

i cosϕ
| sin 2ϕ| − b

−

√
b2 − 1

| sin 2ϕ| − b

) (
x −

i cosϕ
| sin 2ϕ| − b

+

√
b2 − 1

| sin 2ϕ| − b

)dx

=
| sin 2ϕ| − b
√

b2 − 1
ln

(
b +
√

b2 − 1
)

= (| sin 2ϕ| − b) rog(b). (A.10)

Finally, using (A.10) in (A.9),

I2 =
iγ

| sin 2ϕ| − b

(
2̃ϕ −

π

2
+ iγ cos 2ϕ rog(b)

)
+ δ rog(b). (A.11)
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