
HAL Id: cea-04409169
https://cea.hal.science/cea-04409169

Submitted on 22 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Enhancing Reflectometry Systems with
CHIRP-OMTDR and Compressed Sensing: A Study on

Signal Recovery Quality
Yosra Gargouri, Nicolas Ravot, Mariem Ben Hadj Abdallah, Mickaël Cartron

To cite this version:
Yosra Gargouri, Nicolas Ravot, Mariem Ben Hadj Abdallah, Mickaël Cartron. Enhancing Reflectom-
etry Systems with CHIRP-OMTDR and Compressed Sensing: A Study on Signal Recovery Quality.
30th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2023), Dec 2023,
Istanbul, Turkey. 4 p., �10.1109/ICECS58634.2023.10382865�. �cea-04409169�

https://cea.hal.science/cea-04409169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Enhancing Reflectometry Systems with
CHIRP-OMTDR and Compressed Sensing:

A Study on Signal Recovery Quality
Yosra GARGOURI

Universite Paris-Saclay,
CEA, List,

F-91120, Palaiseau, France
yosra.gargouri@cea.fr

Nicolas RAVOT
Universite Paris-Saclay,

CEA, List,
F-91120, Palaiseau, France

nicolas.ravot@cea.fr

Mariem SLIMANI
Universite Paris-Saclay,

CEA, List,
F-91120, Palaiseau, France

mariem.slimani@cea.fr

Mickael CARTRON
Universite Paris-Saclay,

CEA, List,
F-91120, Palaiseau, France

mickael.cartron@cea.fr

Abstract—This paper investigates the application of Com-
pressed Sensing (CS) in Orthogonal Multi-tone Time-Domain Re-
flectometry (OMTDR) using a specific signal known as CHIRP-
OMTDR. The Random Demodulator (RD) has been chosen as
the Analog-to-Information Converter (AIC) in the acquisition
chain. The study focuses on the influence of RD’s filter selection,
signal length, and compression factors on signal recovery quality.
The results demonstrate that reconstruction quality improves
with longer signal lengths, and that the choice of low-pass filter
type and order has minimal impact. The findings contribute to
the enhancement of reflectometry systems based on Compressed
Sensing.

Index Terms—OMTDR, CHIRP-OMTDR, Random Demodu-
lator, Reflectometry, Compressed Sensing.

I. INTRODUCTION

Reflectometry is a nondestructive sensing system used to
identify and characterize electrical faults in cables or transmis-
sion lines. It involves transmitting a signal through a medium
and analyzing the reflections caused by impedance changes.
Reflectometry has also other applications such as detecting
damage in photovoltaic systems, characterizing nanostructures,
and evaluating moisture content in soils [1].

A significant challenge in reflectometry is enhancing the
accuracy of locating and characterizing impedance discontinu-
ities, which contain valuable information. This task requires
the use of high-frequency Analog-to-Digital Converter (ADC).
However, the cost, power consumption, and complexity asso-
ciated with very high-frequency ADCs introduce significant
limitations. As a result, alternative solutions like compressed
sensing have emerged to overcome these challenges [2].

Compressed sensing theory enables accurate signal recovery
with fewer samples than what the Nyquist-Shannon theorem
dictates. This reduction in required samples allows for a
decrease in sampling frequency and memory requirements.
Previous studies [2] have demonstrated promising results in
detecting impedance discontinuities using compressed sensing
on linear chirp signals. This study goes a step further by
investigating OMTDR signals and examining the impact of
filter selection, signal length, and compression factors on the
quality of the reflected signal reconstruction. The findings will

contribute to a better understanding of the factors influencing
signal reconstruction, ultimately improving the accuracy and
reliability of CS-based reflectometry systems.

II. THEORY OF COMPRESSED SENSING

A. Principle of Compressed Sensing

In traditional Digital Signal Processing, signals are typically
sampled uniformly following the Nyquist-Shannon theorem,
where the sampling rate is at least twice the signal bandwidth.
Compressed Sensing, also known as Compressive Sensing,
Compressive Sampling or CS, is a data acquisition technique
that aims to capture signals directly in a compressed form with
nonadaptive measurements.

The main idea behind CS is that many real-world signals
exhibit sparsity, meaning that they can be represented by a
sparse or compressible set of coefficients in a suitable basis.
By leveraging the knowledge of signal sparsity, the com-
pressed measurements obtained through CS can be efficiently
reconstructed using advanced signal processing algorithms.
It becomes possible to accurately reconstruct the original
signal at a significantly lower rate than the Nyquist rate. This
reduction in sampling rate has various advantages, including
reduced storage requirements, data transmission bandwidth,
and power consumption during acquisition [3].

B. Analog-to-Information Converter (AIC)

The concept of compressed sensing has led to the devel-
opment of a new type of converter known as the Analog-to-
Information Converter (AIC) [4]. AICs differ from conven-
tional ADCs in that they can operate at lower sampling rates
than those dictated by the Nyquist-Shannon theorem thanks to
the CS techniques. Prominent AIC architectures include the
Non-Uniform Sampler (NUS), Random Demodulator (RD),
and Random Modulator Pre-Integrator (RMPI) [3].

III. CS-BASED REFLECTOMETRY ARCHITECTURE

A. Conventional reflectometry vs CS-based reflectometry

The conventional reflectometry chain is depicted in Fig.1.
A signal is injected into the device under test (DUT) using a



Fig. 1. Schematic diagram of conventional reflectometry architecture

Fig. 2. Schematic diagram of CS-based reflectometry architecture

digital-to-analog converter (DAC). This injected signal prop-
agates through the medium and reflects upon encountering
impedance discontinuities. The reflected signal is then ac-
quired using an analog-to-digital converter (ADC) operating
at a sampling frequency fs. Following the acquisition, signal
processing techniques are employed for fault detection and
localization purposes.

By utilizing CS, the ADC operating at fs in the conventional
chain will be replaced by an Analog-to-Information Converter
(AIC) operating at a lower frequency, fAIC < fs. This change
necessitates a signal reconstruction phase, which is followed
by signal processing for fault detection and location, as shown
in Fig. 2.

In this study, we will focus on exploring the feasibility of
implementing Compressed Sensing technology specifically for
OMTDR method.

B. OMTDR and CHIRP-OMTDR

Reflectometry-based techniques are categorized based on
the injected waveforms and the methods used for analyz-
ing the reflected signal. The analysis of the reflected signal
can be performed in either the time domain (Time Domain
Reflectometry) or the frequency domain (Frequency Domain
Reflectometry). Various well-known reflectometry methods are
reviewed in [5].

Previous studies on CS-based reflectometry mainly focused
on Time-Domain Reflectometry (TDR) methods using linear
chirp signals [2]. In this paper, we will explore the Orthogonal
Multi-Tone Time Domain Reflectometry (OMTDR) method.

OMTDR offers not only real-time diagnosis capabilities
but also facilitates data transmission in complex wiring net-
works [6]. In OMTDR, a signal consisting of multiple tones
or frequencies is transmitted, with these tones being encoded
using the M-phase shift keying (M-PSK) digital modulation
technique to carry information [5].

Fig. 3. (a) The time representation of the classical OMTDR signal. (b) the
time-frequency representation of the classical OMTDR signal. (c) the time
representation of the OMTDR signal in chirp form (d) the time frequency
representation of the OMTDR signal in chirp form.

Fig. 4. Block diagram for the Random Demodulator.

However, the classical OMTDR signal is not sparse in the
time domain (Fig. 3(a)), frequency domain, or time-frequency
domain (Fig. 3(b)). This poses a challenge since CS requires
signals to exhibit sparsity in a known domain.

To address this challenge, we have developed a specific
OMTDR signal, referred to as CHIRP-OMTDR (Fig. 3(c)),
which follows the M-PSK modulation and features a com-
pressible chirp waveform in the time-frequency domain (Fig.
3(d)). Detailed information on generating this signal can be
found in patent application [7]. The CHIRP-OMTDR signal
format enables us to explore the application of Compressed
Sening in OMTDR-based reflectometry systems and delve
deeper into its potential benefits.

IV. AIC ARCHITECTURE MODELING

A. Choice of the AIC architecture

We have chosen the Random Demodulator as the AIC archi-
tecture in the acquisition chain. The choice of this architecture
is motivated by its efficiency on compressible signals in the
time-frequency domain for linear chirp waves [2] and its
relative simplicity of implementation compared to an RMPI
architecture.

The RD architecture, depicted in Fig.4, comprises three
main components: a mixer, a filter, and an ADC.

In the RD-based AIC, the reflected signal (Sref ) is demod-
ulated at the device’s input using a pseudo-random sequence



(PN) composed of +1 and -1 values. This demodulation
process operates at a frequency that is equal to or higher than
the Nyquist frequency. Subsequently, the demodulated signal
is filtered and then sub-sampled using an ADC clocked at a
frequency fAIC , where fAIC equals fs/CF (CF denotes the
compression factor employed).

B. Choice of filter and compression factor

In the literature, various types of filters have been employed
in Random Demodulator. Historically, early filters utilized
integrator designs [8] [9]. Butterworth filters have also been
utilized, including second-order Butterworth low-pass filters
[10] and fourth-order Butterworth low-pass filters [11].

In order to determine the appropriate filter for our archi-
tecture, we simulate different filters including the integrator
and Butterworth filters of orders one to six. We compare
their reconstruction accuracy based on the Signal-to-Error
Ratio (SER). Additionally, we investigate the impact of signal
lengths, and compression factor on the system’s performance.
To achieve this, we proceed as follows:

1) During the emission phase, we generate the CHIRP-
OMTDR signal with a variable length (N, ranging from
128 to 2048 samples) at a frequency of 200 MHz.

2) The signal is injected and propagated into a coaxial
cable.

3) The reflected signal passes through the AIC block: it is
multiplied by a pseudo-random sequence at 200 MHz.

4) Next, it undergoes filtering. We explore different filter
choices, including an integrator filter and Butterworth
filters ranging from the first to the sixth order.

5) Subsequently, the filtered signal is downsampled using
compression factors of 2, 4, and 8.

6) Finally, we reconstruct the signal and evaluate the re-
construction accuracy (SER) using the general formula.
SER = 20 · log10

(
∥RCV ∥2

∥(RCV −RCS)∥2

)
where RCV represents the reflectogram of a conven-
tional reflectometry chain and RCS represents the re-
flectogram of a CS-based reflectometry chain.

Figures 5, 6 and 7 illustrate the variation of SER as a
function of the signal length N and the nature of the filter
for compression factors 2, 4 and 8, respectively.

We observe that irrespective of the filter type and its
order, there is a consistent trend in terms of reconstruction
quality, with the results being very similar. Therefore, what
matters most from our standpoint is not necessarily having a
high-fidelity low-pass filter, but rather having a filter with a
stable impulse response. This is crucial due to the sensitivity
of the Random Demodulation (RD) technique to distortion
introduced by the low-pass filter component [11].

Furthermore, we observe that, for the same compression
factor CF, the reconstruction quality (SER) improves as the
signal length N increases. This finding aligns with the state of
the art in CS, which suggests that the minimum measurement
requirement for accurate reconstruction scales approximately
logarithmically with the signal size. In other words, as the

Fig. 5. Evaluation of the SER as a function of the number of signal points and
the nature of the filter (cutoff frequency fc=50 MHz for Butterworth filters)
for a compression factor of 2.

Fig. 6. Evaluation of the SER as a function of the number of signal points and
the nature of the filter (fc=25 MHz for Butterworth filters) for a compression
factor of 4.

signal length increases, the number of required measurements
for accurate reconstruction also increases, but at a slower rate
than a linear relationship.

However, it is worth noting that the reconstruction quality
deteriorates when using a compression factor (CF) of 8. We
will exclude this compression factor and instead focus on
CF = 2 and CF = 4.

Fig. 7. Evaluation of the SER as a function of the number of signal points and
the nature of the filter (fc=12.5 MHz for Butterworth filters) for a compression
factor of 8.



Fig. 8. Signal Length Estimation.

C. Choice of the length of the injection signal

To determine the optimal signal length N, two factors must
be considered: signal reconstruction error precision (SER) and
the time required for signal reconstruction. To determine the
optimal signal length, we conducted a statistical analysis of
30 simulations using two filter types (an integrator and a 6th-
order Butterworth) and two compression factors (CF=2 and
CF=4). By applying Compressed Sensing with varying signal
lengths (ranging from 128 to 2048), we reconstructed the
signal, measured the reconstruction time, and evaluated the
SER.

Our observations revealed that increasing the signal length
improves signal reproduction accuracy, resulting in a higher
SER. However, longer sequences also lead to longer execution
times during the reconstruction phase. To strike a balance
between SER and reconstruction time, we found that selecting
N=512 points provides a well-balanced compromise.

Fig. 9 illustrates an example of the reconstructed reflec-
togram quality with a reconstruction precision of 8.42 dB
compared to a standard reflectogram without CS. This re-
construction precision was evaluated after applying CS to
a 512-point signal, using a 6th-order Butterworth filter and
subsampling by a compression factor of 4, as compared to the
standard case.

V. CONCLUSION

In conclusion, our study has demonstrated the effectiveness
of a CS-based reflectometry architecture in accurately recover-
ing reflected signals in the context of OMTDR. By employing
a compressed factor of 4 and a 512-point CHIRP-OMTDR
signal, we achieved reliable signal recovery. Furthermore, our
findings indicate that the selection of low-pass filter type and
order has negligible influence on the reconstruction quality.
After completing the phase of simulations and testing, our
next step involves conducting an experimental test bench
using evaluation boards. The ultimate goal is to develop an
analog reflectometry printed circuit board (PCB) based on
Compressed Sensing.

Fig. 9. Reflectogram generated with the conventional reflectometry architec-
ture at 200 MHz (blue curve), reflectogram generated with the reflectometry
architecture based on CS at 50 MHz (N=512 samples, CF=4, Butterworth
filter of order 6 and fc=25 MHz).
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