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Abstract— Continual learning is a growing challenge of 

artificial intelligence. Among algorithms alleviating 

catastrophic forgetting that have been developed in the past 

years, only few studies were focused on face emotion 

recognition. In parallel, the field of emotion recognition raised 

the ethical issue of privacy preserving. This paper presents 

Dream Net, a privacy preserving continual learning model for 

face emotion recognition. Using a pseudo-rehearsal approach, 

this model alleviates catastrophic forgetting by capturing the 

mapping function of a trained network without storing 

examples of the learned knowledge. We evaluated Dream Net on 

the Fer-2013 database and obtained an average accuracy of 45% 

± 2 at the end of incremental learning of all classes compare to 

16% ± 0 without any continual learning model. 

 

Index Terms— continual learning, incremental learning, 

pseudo-rehearsal, catastrophic forgetting, privacy, face emotion 

recognition, replay method 

I. INTRODUCTION  

Emotion plays a central role in many social interactions. 

During their exchanges, human beings use the tone of their 

voice, facial expressions or even gestures to convey their 

feelings and use these same universal keys to decode the 

emotions of their peers. Computers, as “smart” as they may 

be, do not yet have access to this essential capability of 

human communication. As facial expressions are one of the 

main cues for human non-verbal communication, emotion 

recognition through facial images have been widely studied 

in the last decades [1], [2]. Deep learning methods are 

increasingly used for face emotion recognition in the wild 

because they show very high performances extracting and 

analyzing features from raw data [3].  
The correct training of deep learning algorithm requires 

many input data and such databases are not easy to design. 
Laboratory databases mainly cover the seven basis emotions 
that are Neutral, Anger, Fear, Sadness, Disgust, Surprise and 
Happiness. But other finer emotion also exists [4], [5] and new 
methods like FACS [6] were developed in order to cover this 
larger range of emotional expression. Most of facial emotion 
recognition systems use Artificial Neural Networks (ANNs) 
trained “offline” with such databases. However, to move 
towards more and more intelligent systems adapting to their 

environment, we are going to encounter the problem of 
continual learning with new examples or with new emotions. 

From human point of view, this continuous adaptation to 

new information is possible as people continually learn from 

their own experiences with the ability to keep and fine-tune 

previously acquired knowledge. In ANNs, with such 

constraint, continual adaptation is not possible by default. 

When a trained ANN learns new examples, it adapts its 

parameters in order to fit the new set of examples without 

taking into consideration previous knowledge. Consequently, 

the ANN no longer fits the previous examples, leading to a 

drastic reduction of the model’s performance. That effect is 

called "catastrophic forgetting" and is a major issue in deep 

learning [7], [8]. In ANN continual learning, the easiest way 

to overcome catastrophic forgetting is to learn new training 

examples jointly with old ones to avoid forgetting previously 

seen examples. In this way, the best and simplest solution is 

to store all the previously seen examples. However, this 

solution is unrealistic for three main reasons:  

i. Privacy issues are usually a concern when 

storing raw proprietary data. In this paper, we 

want to propose a way to overcome this 

important ethical problem. 

ii. Large memory footprint requirements are often 

impractical for edge or embedded devices. 

iii. Complete retraining for each new set of 

incoming data is infeasible on large scales due 

to computational power and learning time 

limitation. 

 

Since the 90s, various algorithms have been developed 

in order to deal with continual learning issues, we are now 

able to separate the different approaches into three groups [9]: 

regularization inspired from synaptic consolidation, 

parameter-isolation inspired from neurogenesis and replay 

inspired from human memory consolidation. Regularization 

main characteristic is to distribute the knowledge over the 

network by maintaining most important weights of the 

previously trained network while learning new classes [10], 

[11]. Parameter isolation method consist in freezing the ANN 

parameters and allocating additional neural resources to 
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acquire new knowledge [12], [13]. Replay methods mainly 

consists in rehearsing old knowledge when learning a new 

task [14], [15]. 

One of the difficulty of continual learning approaches is to 

find a trade-off between stability and plasticity, the dilemma 

at the origin of catastrophic forgetting issues. In fact, in an 

ANN, plasticity of connections is essential for the learning of 

new knowledge while it needs stability in order to conserve 

the previous encoding knowledge [16], [17]. Regularization 

and parameter isolation approaches most of the time trade 

their plasticity for stability. We will thus focus on replay 

methods that nowadays find a better answer to this stability-

plasticity dilemma. Replay methods are inspired from the 

human brain hippocampal-neocortical system. In fact, some 

studies suggest that one of the main source of memory 

consolidation in human brain is the replay of neural activity 

examples during sleep [8], [18]. It exists two ways to 

implement replay methods: the rehearsal approach that stores 

a fraction of old examples [14], [19] and the pseudo-rehearsal 

approach that uses artificially generated examples 

representing previously learned knowledge [15], [20]. In both 

cases, those examples are then interlaced with new ones 

during the learning of new examples.  

A replay model combining rehearsal and pseudo-rehearsal 

approaches has been recently proposed [21]. In this model, 

examples representing previously learned knowledge are 

generated through a reinjection sampling procedure (i.e. 

iterative sampling [22]) that uses old examples stored in a 

small buffer as a seed. 

All those strategies implicitly assume that examples that 

resemble the input distribution are necessary for optimal 

retrieval of old knowledge. However, only a few works have 

focused on an optimal model for continual learning with 

privacy constraints.  

In the field of emotion recognition, privacy is a major ethical 

issue since the face is one of the more useful biometric data 

to recognize a person on images [23]. For this reason, this 

study proposes a privacy-preserving continual learning 

model for facial emotion recognition, Dream Net. This model 

is a data free version of the combined-replay model [21]. To 

preserve the privacy of the data, we improved the model to 

employ the same reinjection sampling procedure but using 

random noise as seed.  

In the next section (II) we provide more background on 

continual learning and emotion detection. Then we describe 

the Dream Net model in section III. In section IVwe present 

results of our experiments. Finally, section V is about 

conclusion and perspective. 
 

II. RELATED WORK 

A. Catastrophic forgetting and continual learning 

Catastrophic forgetting is a challenging issue of deep 

learning related to the stability-plasticity dilemma of ANNs 

[16]. As explained in the introduction (I), the most effective 

approaches to avoid catastrophic forgetting in continual 

learning problems are based on replay strategies that find an 

optimal compromise between stability and plasticity [24]. For 

example, a traditional way to alleviate catastrophic forgetting 

is to relearn a minimal portion of what the model has learned 

before. This is the case of the Episodic replay algorithm 

proposed by Chaudhry et al. [14]. This approach uses a single 

ANN and a tiny memory buffer that stores old examples and 

associated labels. For each new example, the ANN is trained 

with old examples from the memory buffer alongside the new 

examples.  

Alternatively, the replay strategy, introduced by Robins et al. 

[25], consists of replaying what the neural network might 

have learned before by employing an input stimulus and the 

associated activation pattern at the output of the network 

instead of the ground-truth labels. Various study highlighted 

that this input-output activation patterns contain enough 

information to prevent the ANN from catastrophically 

forgetting previously acquired knowledge [19], [26]. Replay 

methods are usually divided into two categories: rehearsal 

and pseudo-rehearsal. In both strategies, the idea is to capture 

and replay the learned predictive function f, which is the 

function encoded by the ANN when it learns to associate a 

set of input examples to its corresponding outputs labels [20], 

[25]–[27]. 

Rehearsal methods aim to capture f through real examples 

of a memory buffer. At each learning step, a portion of 

learned examples is stored in a memory buffer in order to be 

used later in the process of capturing f. Icarl [19] was the first 

model to use this solution in large-scale datasets. This model 

uses a memory buffer and a knowledge distillation strategy 

[28] to retrieve and consolidate previously learned 

knowledge. It is among the best continual learning solution 

in the state of the art with Episodic replay algorithm [14]. 

Instead of using real-examples from previously learned 

knowledge, the pseudo-rehearsal method consists in 

generating with a second network, an auxiliary set of 

examples that represents the original input distribution. In 

this way, the generated synthetic examples and their 

corresponding activation patterns are employed to 

consolidate previously acquired knowledge [15], [26], [29], 

[30]. This approach has been improved by the development 

of powerful generative models such as Generative 

Adversarial Networks (GAN) [31] and Variational Auto-

Encoder (VAE) [32]. However, recent works raise the issue 

of the instability of generative models, the challenges in 

modeling complex distributions [33] and the potential 

privacy issues [24]. Alternatively to those generative models, 

Rousset et al. [26] proposed a pseudo-rehearsal method that 

bypasses the input distribution by employing a sampling 

procedure to capture the learned function without relying on 

realistic examples (i.e. examples that look like the previously 

learned samples). Their solution relies on a dual network 

architecture (Net1 and and Net2). Net1 is in contact with a 

new input stimuli, while Net2 generates synthetic examples 

for Net1, allowing Net1 to preserve old knowledge. Synthetic 

examples generation in Net2 is done with a re-injection 

sampling procedure (i.e. iterative sampling) that enables to 

capture the learned function. The interest of this method is to 

capture the network's learning function with synthetic 

examples instead of representing previously seen examples. 

An approach combining advantages of rehearsal and 

pseudo-rehearsal approach was developed recently: the 

combined replay model [21]. This model uses the tiny 

memory buffer with real examples to capture previously 

learned knowledge through the reinjection sampling 

procedure proposed in [22], [29]. This approach shows 



competitive results for tiny memory buffers on Mnist, 

Cifar10 and Cifar100 that are classic deep learning datasets. 

 

Excepted for Rousset et al. [26] most of the solutions 

presented above implicitly assume that examples that look 

like the input distribution are needed to capture f.  

Inspired by Rousset et al. [26] and by the combined replay 

approach [21], our work focuses on building a model with an 

optimal architecture to capture the mapping function without 

relying on input distribution. We thus propose a totally data-

free model, Dream Net, that alleviates catastrophic forgetting 

without relying on small buffers or generative models. 
 

B. Continual learning for emotion recognition 

To the best of our knowledge, only two recent articles 

propose continual learning algorithms for emotion 

recognition that alleviate catastrophic forgetting. 

The first one is an unsupervised setting for continual learning 

of emotions of individual persons on video and audio data 

[34]. To deal with catastrophic forgetting, the authors 

designed what they call an “affective memory” with a 

“growing when required” (GWR) network that is part of 

parameter-isolation continual learning approach. The 

proposed algorithm is very useful in the frame of emotion 

detection since it allows dealing with temporal audio and 

video data while providing emotion recognition. 

Nevertheless, the employed algorithm is part of the 

parameter-isolation continual learning approach which does 

not provide good trade-off between stability and plasticity. 

The second one presents a dual-memory framework for 

continual learning of facial emotion [35]. They designed an 

auto-encoder based “imagination” model for continual 

learning of emotions on facial expression. The goal of this 

framework is to simulate the human capability to imagine 

interaction in order to improve its abilities to remember 

previously seen expressions and generalizing on unseen ones 

for a given subject. The generative part of the model allows 

to create photo-realistic images of the six basis emotion 

expression for a given face image. It allows the creation of 

additional data for each class in order to increase feature 

representation and thus consolidate the learning process. The 

dual memory framework is composed of two “growing when 

required” networks representing respectively semantic and 

episodic memory. Episodic memory sequentially receives 

information and creates a feature prototype from input. Then, 

the semantic memory receives “winner neurons” from the 

episodic memory and add them to its architecture only if they 

are more accurate than existing ones. A pseudo-rehearsal 

process enables to replay periodically episodic activations in 

order not to forget representations of previous classes. This 

continual learning framework is not easy to deploy because it 

uses both neurogenesis and pseudo-rehearsal approaches. 

With our proposed model Dream Net, the approach is 

different; we do not train our model for a specific subject but 

on a generic database. The strengths of our approach 

compared to existing ones in emotion recognition field are 

that Dream Net is an agnostic model independent of the 

database and privacy preserving by design. 

  

III. METHOD 

This section presents the continual learning Dream Net 

designed to overcome catastrophic forgetting in a privacy 

preserving way. This section begins with the database choice 

and associated feature extraction method. We then detail 

Dream Net architecture and finally present the experiments 

carried out. 

 

A. Database 

 To assess our model in the field of face emotion 

recognition, we worked with the Fer-2013 database [36]. It 

contains 35685 grayscale 48x48 pixels images with all the 

basis emotions and covering all age, gender and ethnicity 

(Figure 1). This dataset is particularly useful for deep-learning 

as it is a good compromise between a large database like 

AffectNet [37] which would add a scaling problem and 

smaller ones like CK+ [38] or Jaffe [39] captured in a 

laboratory environment that provide only posed emotions. 

Furthermore, Standford University published an open source 

study which aims to calibrate a ResNet50 feature extractor to 

Fer-2013 database [40] inspired from Pramerdorfer et al. 

work [41]. Choosing Fer-2013 dataset thus enabled us to 

begin our study with a baseline architecture that corresponds 

to the best of the state of the art for Fer-2013. 

 

 
Figure 1: Examples of Fer-2013 database [36] 

TABLE 1 shows Fer-2013 images distribution over class. The 

emotion “disgust” is under-represented while the emotion 

“happy” is over-represented compare to other emotions in the 

dataset. We firstly split the dataset into training (80% of the 

database), validation (10% of the database) and test (10% of 

the database) sets so as not to test the model with training 

data. Then, in order to obtain a balanced training dataset that 

contains 5000 images per classes, we randomly duplicate 

images of under-represented classes and delete images in 

over-represented classes. This method prevents the 

introduction of a bias due to the imbalance of classes during 

the training step, its interest has been shown in the two 

following papers [42], [43].  

TABLE 1: FER-2013 EMOTION DISTRIBUTION OVER TRAINING, VALIDATION 

AND TEST SETS (80%, 10%; 10%) 

 

B. Feature extraction 

For feature extraction, we employ the ResNet50 model pre-

trained on the Fer-2013 database delivered by Stanford 

University study [40]. Figure 2 details the ResNet50 

architecture, the input of the network takes Fer-2013 images 

resized to 197x197 pixels on RGB channels and then a 

Emotion 

Angry Disgust Fear Happy Sad Surprise Neutral 

4955 549 5124 8992 6080 4005 6201 



succession of convolutional and identity blocks allows the 

extraction of features in a way to classify facial emotions. The 

network is provided with the classifier that allowed its pre-

training. In order to use the ResNet50 network only for 

feature extraction, we cut it at the red mark on Figure 2, just 

before the classifier input. For each image of the Fer-2013 

database, we thus obtain 2048 features that represent the 

facial emotion of the person. Those features are then 

incrementally given to the input of the Dream Net model. 

 
Figure 2: Pre-trained ResNet50 architecture 
Convolutional Block extracts features while changing the input dimension. 

Identity Block enables to extract features without changing input dimension. 

 

In this work, to ensure that the convolutional filters are well 

trained, we employ the presented ResNet-50 pre-trained on 

Fer-2013. Our choice may be arguable since we employ the 

most optimal convolutional filters; however, feature 

representation is beyond this paper's scope. 

 

C. Dream Net architecture 

Dream Net is a data-free version of the combined replay 

continual learning algorithm proposed in [21]. The original 

architecture is inspired from Rousset and Ans work [26] 

which consists in alleviating catastrophic forgetting using a 

pseudo-rehearsal incremental technique that captures the 

model’s learned function. In the following part, the term 

pseudo-example refers to a pair (pseudo-feature, pseudo-

label) artificially generated that characterizes the learned 

function of a model. 

Figure 3 illustrates the global architecture of the model 

composed of two fully connected hybrid networks: Learning 

Net and Memory Net which are structured as following:  

- An input layer that has the size of features extracted 

from images.  

- Several hidden layers with parameters depending on 

the considered database. For Fer-2013 we use one 

hidden layer with 1000 neurons. 

- An output layer, with sigmoid activation function, 

composed of several neurons corresponding to the 

input (Auto-associative or Auto-encoder part) and 

several neurons corresponding to the number of 

classes (Hetero-associative or part). 

 

The hybrid architecture is also called Auto-Hetero associative 

ANN because it allows replicating input information like a 

standard auto-encoder (Auto) and classifying data in a 

supervised way like a standard classifier (Hetero) in a single 

inference. This particular architecture enables the algorithm 

to learn the dataset and generate pseudo-examples that 

capture the learned function. 

 

Our Dream Net architecture can be divided into three phases 

(mentioned as 1, 2 and 3 on Figure 3):  

1) Learning Net learns real-features from a class N and 

pseudo-features from the previously learned classes (0 to N-

1) 

2) Learning Net transfers its weights to Memory Net.  

3) Memory Net captures the learned function using a 

reinjection sampling procedure. The reinjection sampling 

procedure consists in the following steps: inject a random 

noise input vector and reinject the replication vector obtained 

at the output of the auto-associative part of Memory Net at its 

input and so on. At each reinjection, Auto and Hetero 

associative outputs of Memory Net are conserved to create 

pseudo-examples. After several reinjection, we obtain a 

pseudo-examples database that contains pseudo-features and 

corresponding pseudo-labels obtained after each reinjection 

(data from the first inference is not kept). We note that for the 

first class learned, an un-trained Memory Net also generates 

pseudo-examples. 

 

For each new class to learn, we repeat this learning cycle. 

 
Figure 3: Dream Net model architecture scheme 

 

D. Experiments 

To benchmark our model in front of state of the art 

incremental learning methods, we implemented several 

models with the Fer-2013 database. We separate those 

algorithms into two categories: baseline models and literature 

models. 

 

Baseline models: 

Baseline models are models not implemented in literature but 

that enable to position our accuracy results and show that 

effects observed are due to our model architecture 

specificities and not to other properties. These are therefore 

control models. 
 

 Offline: 

This first architecture consists in having an auto-hetero 

associative ANN like Learning Net and Memory Net and train 

it with all classes at the same time. We designed this network 

such as we obtain the same accuracy results on Fer-2013 

database as with the simple classifier initially implemented in 

the ResNet50 network used for feature extraction (Figure 2). 

This enables to show that the hybrid architecture does not 

have a detrimental effect on the final accuracy and gives us 

the maximum accuracy we can obtain at each step of the 

learning. 
 



 Class by class learning without specific algorithm: 

The goal of this second architecture is to highlight the 

catastrophic forgetting effect. For this, we use a single Auto-

Hetero associative ANN without reinjection sampling 

procedure. The only action to remember previously learned 

classes is to initialize the network with previously learnt 

weights. The model receives the classes to learn one by one. 
 

 Auto-Hetero replay: 

For the third architecture, we use two Auto-Hetero 

associative ANN with similar role as Learning Net and 

Memory Net in the Dream Net model but without the 

reinjection sampling procedure on Memory Net. This last 

baseline model enables to highlight the relevance of 

reinjection with respect to dual-network architecture for the 

success of the algorithm. 

 

Literature models:  

Literature models are state of the art incremental learning 

algorithms that have currently the best results on classic 

machine learning databases: Mnist, Cifar10 and Cifar100. 
 

 Icarl [19]: 

We implemented a fully connected version of Icarl [15] 

which is a rehearsal method that also uses a dual-network. 

Networks used in this algorithm are Hetero associative ANN 

(classifiers). One of them captures previously learned 

knowledge using a memory buffer composed of old real 

examples. This process is called classifier-based distillation. 

We decided to compare our model to this one due to its 

superior performances compare to other incremental learning 

algorithms [9]. 
 

 Episodic replay [14]: 

This algorithm uses a simple classifier with a memory buffer 

composed of old real examples in order to remember 

previously learned classes. We implemented the fully 

connected version of this method that is currently listed in 

incremental learning state of the art as better than other replay 

methods. 
 

 Combined replay [21]: 

Dream Net is the data free version of this model. 

Consequently, its architecture is very close to Dream Net 

presented above in subsection III-C. The major difference is 

that a tiny memory buffer composed of old real examples is 

used for the reinjection sampling procedure instead of 

random noise. 

 

Hyper-parameters and Metrics:  

We perform all the experiments with the hyper-parameters 

presented in TABLE 2 for all presented algorithms. 

The random noise use for our model, Dream Net, is an 

isotopic Gaussian distribution with a center at 0 and a 

variance of 1, N(0, 1). We chose this distribution because this 

is the one classically used in generative models [32], [44]. 

We measure the performance of all our experiments on the 

testing set using accuracy. All our results are averaged over 

10 runs and we display confidence intervals at 95% on all of 

them. 

 

TABLE 2: MODELS HYPER-PARAMETERS 

Models 
Hyper parameters 

Units per 

hidden layer 

Activation 

function 
Optimizer 

Last layer 

activation 

Offline [4096, 1024] [relu, relu] Adam Sigmoid 

Auto-

Hetero 
Replay 

[1000] [relu] Adam Sigmoid 

Icarl [1000, 1000] [Mish, Mish] SGD* Sigmoid 

Episodic 
Replay 

[1000, 1000] [Mish, Mish] SGD* Softmax 

Dream 

Net 

model 

[1000] [relu] Adam Sigmoid 

*SGD = Stochastic Gradient Descent 
 

IV. RESULTS 

In this section, we present all experimental results 

obtained. First, we evaluate Dream Net accuracy on several 

relevant parameters. Then, we study the influence of emotion 

order and we finally present a general benchmark that enables 

to position the Dream Net model in relation to literature and 

baseline models. 

For the study of Dream Net parameters and for the general 

benchmark, emotion order is arbitrarily fixed to [angry, 

disgust, fear, happy, sad, surprise, neutral]. 

 

A. Dream Net parameters tuning 

 Ratio pseudo-examples over real-examples effect: 

This first study enables us to choose the ratio of pseudo-

examples over real-examples. In fact, as the learning of the 

last emotion consists in interlacing real examples of this 

emotion with pseudo-examples representing the learned 

function of previous emotions, we wondered if increasing the 

number of pseudo-examples compared to real-examples 

could improve performances on previously learned emotions. 

We thus evaluated the impact of the ratio modification on 

Dream Net accuracy in Figure 4. To change the ratio we 

increased or decreased the number of generated pseudo-

examples by changing the number of random noise batches 

at the input of Memory Net. 

Figure 4 shows that from a ratio of 20 (i.e. 1 true example for 

20 pseudo-examples), the increase of the ratio does not 

increase the global accuracy of Dream Net. We can even 

observe a decrease of the global accuracy from a ratio of 40. 

This curve thus highlights that the ratio of 20 is optimal and 

increasing it does not improve the accuracy of the model. 

 
Figure 4: Ratio pseudo vs real examples study. 

Final global accuracy of Dream Net over pseudo vs real examples ratio. 

 

 



 Number of reinjections effect: 

We then studied the effect of the number of reinjection in the 

reinjection sampling procedure of Memory Net. We tested six 

different numbers of reinjection between 0 and 10. 

Figure 5 gives the global accuracy of the model after continual 

learning of the seven emotions over the number of 

reinjections. We can see that we reach the optimal accuracy 

for Dream Net for four reinjections. From this value, the 

increase of the number of reinjections does not changes the 

accuracy of Dream Net model. We can thus conclude that 

four reinjections are optimal for Dream Net. 

 
Figure 5: Reinjection number study. 
Final global accuracy of Dream Net over the number of reinjection. 

 

B. Influence of emotion order 

 

We then studied the emotion order influence on Dream Net 

model accuracy. The last emotion was fixed and another six 

emotions order was randomly chosen at the beginning of each 

run. Figure 6 summarizes obtained results and gives each 

emotion average performance depending on last learned 

emotion. It clearly appears that emotions perceptually easier 

to recognize (i.e. happy and surprise emotions) are generally 

better classified than other emotions [45], [46]. In fact, we 

observe that emotions that had already been recognized better 

when learned offline are also better remembered during 

continual learning. Besides, we notice that the last emotion 

learned is always better memorized than the others. 

Nevertheless, the order of emotion does not have a significant 

impact on the global accuracy of the model at the end of the 

learning. Dream Net thus increases emotion accuracy 

disparities already observed when training offline and favors 

the last learned class. 

 
Figure 6: Dream Net emotion order influence. 

For each fixed last emotion, 10 runs with random different order for the six 
first learned emotions have been done. 

C. General benchmark 

Figure 7 summarizes the results of our general benchmark 

that compares Dream Net performances with baseline and 

literature models. The light blue curve of “Class by class 

without specific algorithm” shows the catastrophic forgetting 

effect discussed in section II. In this algorithm, a single auto-

hetero associative ANN is trained class by class and we can 

observe that global accuracy falls until 16%. We fixed Icarl, 

Episodic replay and Combined replay memory buffer sizes to 

10 real-examples per class which gives a total size of 70. We 

can see on Figure 7 that Dream Net overcomes catastrophic 

forgetting and is significantly above Icarl and Episodic replay 

for this memory buffer size. As “Auto-Hetero noise replay” 

model is superimposed with “Class by class without specific 

algorithm” model, we can conclude that the model results are 

not due to dual-network architecture. Thus, the reinjection 

sampling procedure is consequently at the origin of Dream 

Net performances. Besides, we can see that combined replay 

accuracy is not significantly above Dream Net. 

Consequently, using random noise for the reinjection 

sampling procedure is similar as using a memory buffer of 70 

real examples stored from previously learned classes. 

 
Figure 7: General accuracy benchmark with baseline and literature models. 
Y-axis represents the global accuracy of the model on all learned classes. 

X-axis gives the last added emotion. 

 

In order to compare more accurately Dream Net performance 

to Icarl, Episodic replay and Combined replay performances, 

Figure 8 shows the global final accuracy of each model over 

memory buffer sizes. As explained in III, Dream Net does not 

require a memory buffer, that is why its accuracy is constant. 

We can notice that until a memory size of 1400 real examples 

Icarl and Episodic replay are below or not significantly above 

Dream Net. A memory size of 1400 real-examples stored is 

not negligible as it represents a third of training examples of 

a class. Dream Net is thus a compromise to obtain good 

performances without storing any real-example from the 

database, which means that our model is agnostic in the sense 

that it can learn without a priori knowledge on the data and 

offers a privacy-preserving solution. 

 
Figure 8: Memory buffer size benchmark. 
Accuracy of Combined replay, Icarl and Episodic replay models over 

memory buffer size after learning all classes incrementally. 

Angry 91% ± 1 27% ± 6 17% ± 11 12% ± 8 60% ± 14 68% ± 5 27% ± 14 43% ± 3

Disgust 29% ± 15 93% ± 2 22% ± 15 21% ± 14 58% ± 14 66% ± 7 56% ± 21 49% ± 2

Fear 23% ± 9 29% ± 7 89% ± 2 5% ± 3 35% ± 5 65% ± 5 27% ± 10 39% ± 2

Sad 26% ± 3 35% ± 3 17% ± 2 92% ± 0 50% ± 4 67% ± 3 19% ± 2 44% ± 1

Surprise 38% ± 6 56% ± 5 7% ± 2 34% ± 7 92% ± 0 64% ± 2 40% ± 6 47% ± 1

Happy 28% ± 5 49% ± 4 13% ± 5 39% ± 6 63% ± 4 96% ± 0 32% ± 6 46% ± 2

Neutral 37% ± 5 36% ± 5 25% ± 4 12% ± 3 46% ± 5 61% ± 2 95% ± 0 45% ± 2

39% ± 1 46% ± 1 27% ± 2 31% ± 2 58% ± 1 69% ± 1 42% ± 2 45% ± 1

Happy Neutral
Global 

accuracy

75%

Angry Disgust Fear Sad Surprise

La
st

 e
m

o
ti

o
n

Emotion average performance

51% 60% 81% 87% 71% 69%
Accuracy 

Offline

Mean for each 

emotion

61%



In summary, Dream Net outperforms literature models for 

memory buffer smaller than 1400 real example stored. Its 

final accuracy is significantly above the one associated with 

the original catastrophic forgetting effect. This model thus 

appears to be a robust privacy preserving alternative to replay 

models that store old examples in memory buffers. 

V. CONCLUSION 

This paper presents Dream Net, the first privacy preserving 

continual learning model for face emotion recognition. This 

model is an extension of the already existing continual 

learning method, combined replay, designed to overcome 

catastrophic forgetting which has the particularity of not 

storing any previously learned data, and the specificity to be 

agnostic concerning the class to learn. Moreover, this 

method, unlike other continual learning methods, does not 

require the creation of new synaptic weights, new neurons or 

new multi-head networks. Experimental results on Fer-2013 

database lead to the following conclusions.  

The proposed Dream Net model overcomes catastrophic 

forgetting when learning incrementally new classes and 

outperforms Icarl and Episodic replay literature models for 

memory buffer of size bellow 1400. We highlighted in 

section IV that this performance is due to the reinjection 

sampling procedure used to create the pseudo-examples 

database.  

Even if Dream Net does not overcome literature models 

for all memory size and even if the combined replay model 

gives more accurate results for a buffer size over 70, this 

model has the great advantage to be totally data free. This 

property could be of crucial importance for real applications 

involving privacy preserving issues. For instance, if we want 

to learn a new emotion with a network already trained on 

other emotions, our method will protect the privacy of people 

who participated to the development of the first database of 

emotion. In the present paper we only present a study of class-

by-class continual learning because it is a common approach 

to benchmark these types of model. In future work we plan to 

investigate other type of scenario, closer to “real-life” 

problematics:  

- Learn a database containing the seven basis 

emotions and extend incrementally the model to 

finer emotions without forgetting basis emotions. 

- Learn new examples of classes already present and 

therefore strengthen the classifier with examples 

learned over time without retaining the examples 

already learned. With this kind of streaming 

scenario, overcoming the privacy issue thanks to 

Dream Net will take on its full meaning. 

In the emotion order study (Figure 6) we shown that, even if 

the emotion order does not have a drastic influence on the 

accuracy of each emotion nor on the global accuracy, last 

emotion learned is significantly better memorized than 

emotions learned before. As we already fine-tuned the ratio 

between pseudo-examples of previously learned classes and 

real-examples of the new class and the number of reinjections 

in the reinjection sampling procedure, those parameters do 

not allow improving results’ accuracy. A promising 

possibility for future experiment will be to test more optimal 

seeds. We thus plan to investigate more precisely the choice 

of initial noise at the input of memory net in order to improve 

performances.  

Future work will also include the adaptation of Dream Net to 

more complex emotional databases in order to test the 

generalizability of our model. 

ACKNOWLEDGMENT 

This work has been partially supported by MIAI@Grenoble 
Alpes, (ANR-19-P3IA-0003) 

REFERENCES 

[1] J. Kumari, R. Rajesh, and K. M. Pooja, “Facial 

Expression Recognition: A Survey,” Procedia 

Comput. Sci., vol. 58, pp. 486–491, 2015 

[2] Dhwani Mehta, Mohammad Siddiqui, and Ahmad 

Javaid, “Facial Emotion Recognition: A Survey and 

Real-World User Experiences in Mixed Reality,” 

Sensors, vol. 18, no. 2, Art. no. 2, Feb. 2018 

[3] S. Li and W. Deng, “Deep Facial Expression 

Recognition: A Survey,” IEEE Trans. Affect. Comput., 

pp. 1–1, 2020 

[4] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, 

“A Survey of Affect Recognition Methods: Audio, 

Visual, and Spontaneous Expressions,” IEEE Trans. 

Pattern Anal. Mach. Intell., vol. 31, no. 1, Art. no. 1, 

Jan. 2009 

[5] R. S. Deshmukh and V. Jagtap, “A survey: Software 

API and database for emotion recognition,” in 2017 

International Conference on Intelligent Computing 

and Control Systems (ICICCS), Madurai, Jun. 2017, 

pp. 284–289. 

[6] F. De la Torre and J. F. Cohn, “Facial Expression 

Analysis,” in Visual Analysis of Humans: Looking at 

People, T. B. Moeslund, A. Hilton, V. Krüger, and L. 

Sigal, Eds. London: Springer, 2011, pp. 377–409. 

[7] M. McCloskey and N. J. Cohen, “Catastrophic 

Interference in Connectionist Networks: The 

Sequential Learning Problem,” in Psychology of 

Learning and Motivation, vol. 24, G. H. Bower, Ed. 

Academic Press, 1989, pp. 109–165. 

[8] J. L. McClelland, B. L. McNaughton, and R. C. 

O’Reilly, “Why there are complementary learning 

systems in the hippocampus and neocortex: Insights 

from the successes and failures of connectionist models 

of learning and memory.,” Psychol. Rev., vol. 102, no. 

3, Art. no. 3, Jul. 1995 

[9] M. De Lange et al., “A continual learning survey: 

Defying forgetting in classification tasks,” May 2020 

[10] F. Zenke, B. Poole, and S. Ganguli, “Continual 

Learning Through Synaptic Intelligence,” Jun. 2017 

[11] J. Kirkpatrick et al., “Overcoming catastrophic 

forgetting in neural networks,” Proc. Natl. Acad. Sci., 

vol. 114, no. 13, Art. no. 13, Mar. 2017 

[12] A. A. Rusu et al., “Progressive Neural Networks,” Sep. 

2016 

[13] G. Hocquet, O. Bichler, and D. Querlioz, “OvA-INN: 

Continual Learning with Invertible Neural Networks,” 

Jun. 2020 

[14] A. Chaudhry et al., “On Tiny Episodic Memories in 

Continual Learning,” Jun. 2019 

[15] R. Kemker and C. Kanan, “FearNet: Brain-Inspired 

Model for Incremental Learning,” Feb. 2018 



[16] W. C. Abraham and A. Robins, “Memory retention – 

the synaptic stability versus plasticity dilemma,” 

Trends Neurosci., vol. 28, no. 2, Art. no. 2, Feb. 2005 

[17] M. Mermillod, A. Bugaiska, and P. Bonin, “The 

stability-plasticity dilemma: investigating the 

continuum from catastrophic forgetting to age-limited 

learning effects,” Front. Psychol., vol. 4, 2013 

[18] R. C. O’Reilly, R. Bhattacharyya, M. D. Howard, and 

N. Ketz, “Complementary Learning Systems,” Cogn. 

Sci., vol. 38, no. 6, pp. 1229–1248, 2014 

[19] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. 

Lampert, “iCaRL: Incremental Classifier and 

Representation Learning,” Apr. 2017 

[20] T. Lesort, H. Caselles-Dupré, M. Garcia-Ortiz, A. 

Stoian, and D. Filliat, “Generative Models from the 

perspective of Continual Learning,” Dec. 2018 

[21] M. Solinas et al., “Beneficial Effect of Combined 

Replay for Continual Learning:,” in Proceedings of the 

13th International Conference on Agents and Artificial 

Intelligence, Online Streaming, --- Select a Country --

-, 2021, pp. 205–217. 

[22] M. Solinas, C. Galiez, R. Cohendet, S. Rousset, M. 

Reyboz, and M. Mermillod, “Generalization of 

iterative sampling in autoencoders,” p. 9. 

[23] A. Agarwal, P. Chattopadhyay, and L. Wang, “Privacy 

preservation through facial de-identification with 

simultaneous emotion preservation,” Signal Image 

Video Process., Nov. 2020 

[24] M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. 

Bagdanov, and J. van de Weijer, “Class-incremental 

learning: survey and performance evaluation,” Oct. 

2020 

[25] A. Robins, “Catastrophic Forgetting, Rehearsal and 

Pseudorehearsal,” Connect. Sci., vol. 7, no. 2, Art. no. 

2, Jun. 1995 

[26] B. Ans and S. Rousset, “Avoiding catastrophic 

forgetting by coupling two reverberating neural 

networks,” Comptes Rendus Académie Sci. - Ser. III - 

Sci. Vie, vol. 320, no. 12, Art. no. 12, Dec. 1997 

[27] F. Lavda, J. Ramapuram, M. Gregorova, and A. 

Kalousis, “Continual Classification Learning Using 

Generative Models,” Oct. 2018 

[28] G. Hinton, O. Vinyals, and J. Dean, “Distilling the 

Knowledge in a Neural Network,” Mar. 2015 

[29] G. M. van de Ven, H. T. Siegelmann, and A. S. Tolias, 

“Brain-inspired replay for continual learning with 

artificial neural networks,” Nat. Commun., vol. 11, no. 

1, p. 4069, Dec. 2020 

[30] R. M. French, “Pseudo-recurrent Connectionist 

Networks: An Approach to the ‘Sensitivity-Stability’ 

Dilemma,” Connect. Sci., vol. 9, no. 4, Art. no. 4, Dec. 

1997 

[31] M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, and G. 

Mori, “Lifelong GAN: Continual Learning for 

Conditional Image Generation,” in 2019 IEEE/CVF 

International Conference on Computer Vision (ICCV), 

Seoul, Korea (South), Oct. 2019, pp. 2759–2768. 

[32] D. P. Kingma and M. Welling, “Auto-Encoding 

Variational Bayes,” May 2014 

[33] T. Lesort, “Apprentissage continu: S’attaquer à l’oubli 

foudroyant des réseaux de neurones profonds grâce aux 

méthodes à rejeu de données,” p. 174. 

[34] P. Barros, G. I. Parisi, and S. Wermter, “A 

Personalized Affective Memory Neural Model for 

Improving Emotion Recognition,” May 2020 

[35] N. Churamani and H. Gunes, “CLIFER: Continual 

Learning with Imagination for Facial Expression 

Recognition,” p. 7. 

[36] I. J. Goodfellow et al., “Challenges in representation 

learning: A report on three machine learning contests,” 

Neural Netw., vol. 64, pp. 59–63, Apr. 2015 

[37] A. Mollahosseini, B. Hasani, and M. H. Mahoor, 

“AffectNet: A Database for Facial Expression, 

Valence, and Arousal Computing in the Wild,” IEEE 

Trans. Affect. Comput., vol. 10, no. 1, Art. no. 1, Jan. 

2019 

[38] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. 

Ambadar, and I. Matthews, “The Extended Cohn-

Kanade Dataset (CK+): A complete dataset for action 

unit and emotion-specified expression,” in 2010 IEEE 

Computer Society Conference on Computer Vision and 

Pattern Recognition - Workshops, San Francisco, CA, 

USA, Jun. 2010, pp. 94–101. 

[39] I. M. Revina and W. R. S. Emmanuel, “A Survey on 

Human Face Expression Recognition Techniques,” J. 

King Saud Univ. - Comput. Inf. Sci., p. 

S1319157818303379, Sep. 2018 

[40] A. Khanzada, C. Bai, and F. T. Celepcikay, “Facial 

Expression Recognition with Deep Learning,” p. 6. 

[41] C. Pramerdorfer and M. Kampel, “Facial Expression 

Recognition using Convolutional Neural Networks: 

State of the Art,” p. 7. 

[42] T. T. D. Pham and C. S. Won, “Facial Action Units for 

Training Convolutional Neural Networks,” IEEE 

Access, vol. 7, pp. 77816–77824, 2019 

[43] M. Buda, A. Maki, and M. A. Mazurowski, “A 

systematic study of the class imbalance problem in 

convolutional neural networks,” Neural Netw., vol. 

106, pp. 249–259, Oct. 2018 

[44] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual 

Learning with Deep Generative Replay,” Dec. 2017 

[45] M. N. Dailey, G. W. Cottrell, C. Padgett, and R. 

Adolphs, “EMPATH: A Neural Network that 

Categorizes Facial Expressions,” J. Cogn. Neurosci., 

vol. 14, no. 8, pp. 1158–1173, Nov. 2002 

[46] M. Mermillod, P. Bonin, L. Mondillon, D. Alleysson, 

and N. Vermeulen, “Coarse scales are sufficient for 

efficient categorization of emotional facial 

expressions: Evidence from neural computation,” 

Neurocomputing, vol. 73, no. 13–15, pp. 2522–2531, 

Aug. 2010 

 


