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Article

The Apocarotenoid b-Cyclocitric Acid
Elicits Drought Tolerance in Plants
Stefano D’Alessandro,1 Yusuke Mizokami,1 Bertrand Légeret,1 and Michel Havaux1,2,*

SUMMARY

b-Cyclocitral (b-CC) is a volatile compound deriving from 1O2 oxidation of b-carotene in plant leaves.

b-CC elicits a retrograde signal, modulating 1O2-responsive genes and enhancing tolerance to photo-

oxidative stress. Here, we show that b-CC is converted into water-soluble b-cyclocitric acid (b-CCA) in

leaves. This metabolite is a signal that enhances plant tolerance to drought by a mechanism different

from known responses such as stomatal closure, osmotic potential adjustment, and jasmonate

signaling. This action of b-CCA is a conserved mechanism, being observed in various plant species,

and it does not fully overlap with the b-CC-dependent signaling, indicating that b-CCA induces only

a branch of b-CC signaling. Overexpressing SCARECROW-LIKE14 (SCL14, a regulator of xenobiotic

detoxification) increased drought tolerance and potentiated the protective effect of b-CCA, showing

the involvement of the SCL14-dependent detoxification in the phenomenon. b-CCA is a bioactive

apocarotenoid that could potentially be used to protect crop plants against drought.

INTRODUCTION

Oxidation of the carotenoid b-carotene by reactive oxygen species (ROS), especially singlet oxygen (1O2),

produces various derivatives (apocarotenoids) including b-cyclocitral (b-CC) (D’Alessandro and Havaux,

2019; Ramel et al., 2012a, 2012b; Shumbe et al., 2014). This phenomenon was shown to take place in plant

leaves and to be enhanced under stress conditions (Ramel et al., 2012a, 2012b). In fact, when plants are

exposed to environmental constraints (i.e., drought, cold, or pathogens), which inhibit the photosynthetic

activity, light energy can be absorbed in excess to what can be used by the photosynthetic processes,

hence favoring transfer of electrons or excitation to oxygen and leading to ROS formation (Asada, 2006;

Li et al., 2009). Singlet oxygen is produced from triplet-excited chlorophylls, mainly in the photosystem

(PS) II reaction centers (Pinnola and Bassi, 2018; Krieger-Liszkay et al., 2008, Telfer, 2014; Pospı́�sil and Pra-

sad, 2014). In fact, the PSII centers bind several b-carotene molecules that can scavenge 1O2 molecules

generated therein (Pinnola and Bassi, 2018; Ferreira et al., 2004). 1O2 quenching by carotenoids proceeds

by a physical mechanism that leads to thermal energy dissipation (Ouchi et al., 2010) and through a chem-

ical quenching mechanism involving direct oxidation of the carotenoid molecule by 1O2 (Stratton et al.,

1993; Ramel et al., 2012b; Pinnola and Bassi, 2018). Thus, as a major site of 1O2 production, PSII is also a

major generator of oxidized b-carotene metabolites such as b-CC (D’Alessandro and Havaux, 2019).

b-CC (Figure S1A) is a volatile compound that was shown to act as a signal molecule in Arabidopsis (Ara-

bidopsis thaliana), triggering changes in the expression of 1O2-responsive genes and leading to acclima-

tion to 1O2 and photooxidative stress (Ramel et al., 2012a). Produced by excessive light excitation at the

level of PSII in the chloroplast, b-CC can be considered as an upstream mediator in the 1O2 retrograde

pathway leading to acclimation. Actually, b-CC is one among several signaling metabolites that have

been recently associated with chloroplast-to-nucleus retrograde signaling (Chi et al., 2015; Chan et al.,

2016). However, for most of them including b-CC, the primary targets are still unknown. Moreover, as dis-

cussed elsewhere (D’Alessandro and Havaux, 2019), the b-CC-dependent pathway is distinct from other

retrograde signaling pathways such as the tetrapyrrole pathway (Strand et al., 2003; Woodson et al.,

2011) or the EXECUTER-mediated pathway (Lee et al., 2007). However, as the transcriptome of b-CC-

treated Arabidopsis plants suggests an effect of the apocarotenoid on enzymes related to PAP (30-phos-
phoadenosine 5’-phosphate) metabolism (D’Alessandro and Havaux, 2019), an interaction between the

pathways mediated by b-CC and PAP (see Estavillo et al., 2011) is a possibility that remains to be investi-

gated. Here, we show that b-CC is converted to b-cyclocitric acid (b-CCA) not only in water as previously

reported (Tomita et al., 2016) but also in vivo, thus constituting one of the first steps in the b-CC-dependent

signaling. Exposing plants to exogenous b-CCA induces the expression of b-CC- and 1O2-responsive

genes and enhances plant resistance to stress conditions such as drought. As b-CCA is a water-soluble
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Figure 1. b-CCA Levels in Leaves of Arabidopsis Plants and Their Effect on Gene Expression

(A) Control, untreated plants. Data are the mean of 5 plants; error bars represent SD of the mean.

(B) Plants exposed to water stress (no watering for 7 days).

(C) Plants treated for 4 h with 100 mL volatile b-CC in a hermetically closed box. The controls were treated similarly with

100 mL water.

(D) b-CCA levels in Arabidopsis leaves sprayed with 50 mL/leaf of 1 mM b-CCA or of water (control). Leaves were taken 24 h

after the treatment.

(E) b-CCA levels in leaves of Arabidopsis plants watered at time 0 with 25 mL 1 mM b-CCA solution or with watered

acidified with 1 mM citric acid. Leaves were washed carefully with distilled water before the b-CCA quantification to
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molecule that can be easily applied to plants, e.g., through irrigation water, these results support the pos-

sibility of using this compound to boost drought resistance of crops.

RESULTS AND DISCUSSION

b-CCA Accumulates in Arabidopsis Leaves

b-CC can oxidize into b-CCA (2,2,6-trimethylcyclohexene-1-carboxylic acid), also known as b-cyclogeranic acid

(Figures S1A and S1B). This conversion occurs spontaneously, e.g., upon addition of b-CC inwater (Tomita et al.,

2016), as confirmed in Figure S1C (Supplemental Information).When injected inwater, b-CCdisappearedwithin

24 h, with the concomitant appearance of b-CCA as major oxidation product (Figure S1C) (Tomita et al., 2016).

The question arises as to whether oxidation of b-CC into b-CCA takes place in vivo too. Using gas chromatog-

raphy-mass spectrometry, we were able to measure b-CCA in non-stressed Arabidopsis leaves, and the

measured concentrations were even higher than b-CC levels (Figure 1A). This relative accumulation of b-CCA

compared with b-CC was amplified under stress conditions: when plants were exposed to drought stress,

the b-CC concentration rose by a factor of 3, revealing a condition of excessive light and photooxidative

stress (Ramel et al., 2012a; Shumbe et al., 2017), whereas a 15-fold increase in b-CCA was observed (Figure 1B).

Moreover, when plants were treated for 4 h with volatile b-CC in a closed Plexiglas box (as previously described,

Ramel et al., 2012a), the increased levels of b-CC in the leaves (about 3 times) were found tobe associatedwith a

strong accumulation of b-CCA (Figure 1C), showing that the conversion of b-CC into b-CCA does take place

in vivo. The oxidation of b-CC in water without adding any oxidizing reagent (besides dissolved O2) was

suggested by Tomita et al. (2016) to proceed according to the Baeyer-Villiger oxidation mechanism, which pro-

duces esters from ketones and carboxylic acids from aldehydes (Renz and Meunier, 1999). This b-CC-to-b-CCA

conversion in Arabidopsis appeared to occur with a very high efficiency because the accumulation levels of

b-CCA in b-CC-treated plants were much higher than the b-CC accumulation levels (Figure 1C). Therefore,

we cannot exclude that b-CCA formation is facilitated by an enzyme-catalyzed reaction in planta, e.g., by a

Baeyer-Villigermonooxygenase (van Berkel et al., 2006), as previously reported for the oxidation of castasterone

to brassinolide in brassinosteroid biosynthesis (Kim et al., 2005).

When attached leaves were directly sprayed with b-CCA (Figure 1D), a strong accumulation of b-CCA was

measured inside leaf tissues, indicating that this compound can readily enter the leaves. As b-CCA is sol-

uble and stable in water contrary to b-CC, it can be easily applied to whole plants through irrigation. In Fig-

ure 1E, Arabidopsis plants, treated with b-CCA through the soil, showed b-CCA accumulation in the leaves.

This indicates that exogenously applied b-CCA is taken up by the roots and transported to the leaves

through the xylem. Whether applied through the roots or directly on the leaves, b-CCA accumulated in

leaves without any significant change in the b-CC content (Figure S2). As b-CCA is directly formed from

b-CC, de novo synthesis of b-CCA would imply an increased synthesis of b-CC, which was not observed,

making improbable that the b-CCA treatment triggered b-CCA synthesis rather than b-CCA fluxes from

the soil to the plant tissues.

b-CCA Induces Changes in Gene Expression and Increases Plant Tolerance to Drought

The expression of a number of genes that were previously identified as responsive to b-CC (Ramel et al.,

2012a) was analyzed by qRT-PCR before and after application of b-CCA by spraying attached leaves or

by watering plants, including AT3G04000 (ChlADR), AT5G61820 (unknown), AT5G63790 (ANAC102),

AT5G16970 (ALKENAL REDUCTASE AER), and AT3G28580 (AAA + ATPASE). Both direct application of

b-CCA on leaves and watering of plants with a solution of b-CCA induced a strong upregulation of the

selected genes (Figures 1F and 1G), indicating that b-CCA acts as a signalingmolecule triggering transcrip-

tomic changes. The gene upregulation levels were lower in plants watered with b-CCA relative to leaves

directly sprayed with b-CCA, as were the accumulation levels of b-CCA inside the leaf tissues (24 h after

treatment).

Figure 1. Continued

remove the b-CCA deposits on the leaf surfaces and hence to measure the internal concentration. Data are mean of 6

plants + SD.

(F) Expression levels of 1O2- and b-CC-responsive genes analyzed by qRT-PCR in control leaves and in leaves sprayed with

b-CCA. Data points are mean of 3 plants + SD.

(G) Expression levels of 1O2- and b-CC-responsive genes analyzed by qRT-PCR in control plants and in plants watered with

b-CCA or with 1 mM citric acid for 24 h. Data are mean values of 3 plants + SD.

In (F and G), 1 = AT3G04000, 2 = AT5G61820, 3 = AT5G63790, 4 = AT5G16970. In (G), 5 = AT3G28580. * and>, different

from CTRL at p < 0.01 and p < 0.05 (Student’s t test); +, different from b-CC at p < 0.01 (Student’s t test).
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A previous microarray-based transcriptomic study revealed that a number of water stress-responsive genes

are also inducible by b-CC (Ramel et al., 2012a). The same phenomenon was observed for b-CCA by qRT-

PCR analyses (Figure 2A): the drought marker genes ATAF1 (ANAC002, AT1G01720), RD29A (AT5G52310),

RD29B (AT5G51180), RD22 (AT5G25610), and bZip60 (AT1G42990) (Yamaguchi-Shinozaki and Shinozaki,

1993; Lu et al., 2007; Xiong et al., 1999; Wang et al., 2017) were induced by b-CCA in the absence of any

water stress. However, not all drought marker genes responded to b-CCA because DREB2A

(AT5G05410), a transcription factor functioning in water stress response (Sakuma et al., 2006), was not

induced. RD26 (ANAC072, AT4G27410) and bZIP60 (AT1G42990) showed a different response to b-CCA

compared with the other genes, as their induction was transient. Nevertheless, our results indicate that

the response elicited by b-CCA overlaps, at least partially, with the genetic response to water stress.

This response may reflect the role of 1O2 in water stress (Koh et al., 2016). This prompted us to analyze

the effect of b-CCA on Arabidopsis plants exposed to drought stress. Following irrigation of Arabidopsis

plants with water containing or not containing b-CCA (same pH), water stress was induced by withdrawing

irrigation. After 7 days, control plants showed clear symptoms of stress and dehydration (Figure 2B). These
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Figure 2. b-CCA-Induced Protection of Arabidopsis Plants against Drought Stress

(A) Expression levels of water stress-responsive genes in leaves of Arabidopsis plants watered with b-CCA or with citric

acid (data are means of 3 plants +SD).

(B) Picture ofArabidopsis plants pre-treated with b-CCA or with citric acid (CTRL) and then subjected for 7 days to drought

stress imposed by withdrawing watering.

(C) Picture of the same plants 10 days after re-watering with plain water.

(D) RWC of plants subjected to water stress after pre-treatment with b-CCA or with acidified water (data are mean values

of 6 leaves + SD).

(E and F) Stomatal conductance measured by porometry (data are mean values of 10 leaves + SD) (E) or by infra-red gas

analysis (IRGA) (data are mean values of 5 plants + SD) (F).

(G) Losses of water by Arabidopsis plants (treated or untreated with b-CCA) during water stress (data are mean of 3

plants + SD).

(H) Increased membrane permeability in Arabidopsis leaves, as measured by electrolyte leakage, after 7 days of water

stress (data are mean of 3 plants + SD). *, Different from CTRL at p < 0.01 (Student’s t test).
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symptoms were strongly attenuated in plants pretreated with b-CCA. After rewatering with plain water,

control plants did not recover and died, whereas b-CCA-treated plants recovered and were fully turgescent

(Figure 2C). The leaf relative water content (RWC) wasmuch higher in plants treated with b-CCA throughout

the water stress treatment compared with control plants (Figure 2D). The protection of Arabidopsis by

b-CCA against drought stress was confirmed in other plant species such as pepper (Capsicum), pansy

flower plants (Viola tricolor) (Figure S3), and tomato (Solanum lycopersicum, see below).

Furthermore, we checked the possible effect of b-CCA on soil water retention. The pots were watered with

water containing 0 or 1.5 mM b-CCA, and the soil was then let to dehydrate for several days. No significant

difference was found in the rate of soil drying between the two conditions (Figure S4), indicating that the

b-CCA-induced increase in plant drought tolerance was not due to an effect on the soil itself.

b-CCA Does Not Induce Stomatal Closure

Typical responses of plants to water stress are stomatal closure mediated by the apocarotenoid abscisic

acid (ABA), hence reducing transpiration and water losses (Chaves et al., 2003; Munemasa et al., 2015;

Nguyen et al., 2016), osmotic adjustment (Umezawa et al., 2006; Blum, 2017), and jasmonate signaling

(Kim et al., 2017). Although b-CCA is an apocarotenoid as well as ABA, the protective role of beta carotene

against drought stress does not rely on stomatal regulation. In fact, stomatal closure was not induced by

b-CCA (Figures 2E and 2F), and transpiration was similar in b-CCA-treated and b-CCA-untreated plants

(Figure 2G). We also examined the effects of b-CCA on the ost2-2 Arabidopsis mutant that is impaired

in stomatal regulation due to a constitutive activation of a plasma membrane ATPase (Merlot et al.,

2007) and on the abi1 mutant affected in ABA signaling (Leung et al., 1997). As expected, stomatal

A B C D

E F

Figure 3. b-CCA-Induced Protection of Arabidopsis ost2-2 and abi1 Mutant Plants against Drought Stress

(A) Stomatal conductance (data are mean values of 10 leaves + SD) of WT or ost2-2 plants pre-treated with b-CCA or with

water and then subjected to water stress.

(B) Picture of ost2-2 mutant plants pre-treated with b-CCA or with water (CTRL) and then subjected to 5 days drought

stress.

(C) RWC (data are mean of 6 leaves + SD).

(D) Membrane permeability in ost2-2 mutant leaves measured by ion leakage after 5 days of water stress (data are mean

values of 6 leaves).

(E) Picture of abi1mutant plants pre-treated with b-CCA or with water (CTRL) and then subjected to 5 days drought stress.

(F) RWC of leaves (mean values of 6 leaves). *, Different from CTRL at p < 0.01 (Student’s t test).
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conductance of ost2-2 leaves was enhanced compared with wild-type (WT) leaves (Figures 3C versus 2E),

and water stress developed much more rapidly in ost2-2 plants relative to WT plants when water irrigation

was stopped (Figures 3B versus 2D). However, the protective action of b-CCA was confirmed in the mutant:

leaf dehydration and loss of turgescence were less pronounced in b-CCA-treated ost2-2 plants (Figures 3A

and 3B). As with WT plants (Figure 2), the RWC of ost2-2mutant plants was preserved by b-CCA during wa-

ter stress (Figure 3B). When in the col-0 background, the abi1mutant is not more sensitive to drought treat-

ments than WT (Harb et al., 2010), but the tolerance of abi1 to drought was noticeably increased by b-CCA

(Figures 3E and 3F). The protection of ost2-2 and abi1 by b-CCA confirms that the mode of action of b-CCA

does not rely on ABA signaling and the associated stomatal closure. We also measured stomatal density as

well as the stomatal index before and after b-CCA treatment, because a moderate reduction of this factor

can improve water use efficiency (Dunn et al., 2019). No significant difference was observed between

b-CCA-treated and b-CCA-untreated plants for these parameters (Figure S5).

Also, plant response to water stress usually involves synthesis of osmoprotectants, such as ammonium com-

pounds, sugar, sugar alcohols, and amino acids (Umezawa et al., 2006; Blum, 2017), which permit the main-

tenance of turgor pressure under water stress conditions, thus preserving vital functions. We checked

whether accumulation of b-CCA in leaves could bring about substantial changes in leaf osmotic potential

Jp. However, the data of Figure 4A show that the protective function of b-CCA against drought stress does

not rely on this phenomenon. Indeed,Jp (�0.815MPa) of leaves taken from plants watered with b-CCA did

not differ significantly from Jp of control leaves (�0.786 MPa). Finally, the involvement of a jasmonic acid-

dependent mechanism (Kim et al., 2017) in the b-CCA effect was excluded. In fact, the Arabidopsismutant

coi1, which lacks the jasmonate receptor COI1, although more sensitive than the WT, responded to b-CCA

like the WT, by an increase in drought tolerance (Figures 4B and 4C).

Interestingly, a recent work by Dickinson et al., 2019 has shown that b-CC could act as a root growth regu-

lator. A stimulating effect on root growth can potentially increase drought tolerance by enhancing water

uptake by the plant (Wasaya et al., 2018). To check this possibility, we grew Arabidopsis seedlings in Petri

dishes on solid medium containing 0, 15, and 150 nM b-CCA. Root growth was measured on 15-day-old

seedlings (Figure 4D). A slight, but statistically significant, increase in root length was found to occur at

150 nM b-CCA. However, the effect of b-CCA on root growth is noticeably lower than the reported effect

of b-CC at similar concentrations (Dickinson et al., 2019). Importantly, a sealing method allowing gas ex-

change (3M tape) was possible in this experiment thanks to the water solubility of b-CCA, and this differ-

ence may explain the lower efficiency of b-CCA compared with that of b-CC, as commented in D’Alessan-

dro and Havaux, 2019. Although the short-term nature of the drought stress experiments of Figures 2 and 3

(a few days) implies limited changes in root development, one cannot completely exclude that changes in

root development participate in the drought tolerance of b-CCA-treated plants.

The Protective Effect of b-CCA Is Independent of MBS1 and Is Potentiated by SCL14

Overexpression

b-CCA protected cell membranes against damage under drought stress, as indicated by a much lower

leakage of electrolytes by leaves from b-CCA-treated plants compared with untreated plants, in both

theWT and ost2-2 backgrounds (Figures 2H and Figure 3D). It is thus possible that b-CCA induces a cellular

defensemechanism that reinforcesmembrane stability and resistance to ROS. It is likely that this protection

against membrane disruption during water stress contributed to maintaining leaf water content and

enhancing drought tolerance (Farooq et al., 2009; Premachandra et al., 1991; Tripathy et al., 2000). The

preservation of cell membrane stability is anyway an effect recalling b-CC-induced acclimation to photo-

oxidative stress (Ramel et al., 2012a). Unfortunately, the b-CC-dependent signaling pathway is still largely

unknown. Nevertheless, the roles of METHYLENE BLUE SENSITIVITY 1 (MBS1) and of the SCARECROW

LIKE 14 (SCL14)-dependent detoxification pathway in response to b-CC have been recently described

(Shumbe et al., 2017; D’Alessandro et al., 2018). MBS1 is a cytosolic zinc finger protein essential for regu-

lating the expression of 1O2-responsive genes (Shao et al., 2013). In the mbs1 mutant that lacks the MBS1

protein, the expression of 1O2 marker genes was shown to be markedly deregulated (Shao et al., 2013). For

some genes, induction by b-CC was blocked, whereas the induction of other genes was enhanced (Shumbe

et al., 2017). When exposed to drought stress, the mbs1 mutant behaved as WT, with b-CCA providing a

marked protection against water stress deprivation (Figures 5A and 5B). We can therefore conclude that

the MBS1-dependent signaling pathway, triggered by b-CC and essential for the b-CC-induced acclima-

tion to photooxidative stress, is different from the b-CCA-induced signaling pathway leading to drought
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stress resistance. Consistently, drought-related genes whose expression was observed to be upregulated

by b-CCA (Figure 2A), were also induced in thembs1mutant (Figure 5C). It is therefore possible that b-CCA

mediates a branch of the b-CC signaling pathway, whereas MBS1 regulates another (or several other)

branch(es). Moreover, in contrast with b-CC (Ramel et al., 2012a), b-CCA did not provide any protection

against photooxidative stress induced by excessive light (Figure S6), which has been previously shown

A

B
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D

Figure 4. The b-CCA Protective Effect Does Not Require Osmotic Adjustment or Jasmonate Signaling and Is

Associated with Limited Changes in Root Growth

(A) Leaf osmotic potential of Arabidopsis plants watered with 1 mM b-CCA for 48 h. CTRL, control (data are mean of 8

leaves + SD).

(B). Effect of water deprivation on WT Arabidopsis plants and on coi1 mutant plants pre-treated with 0 or 1 mM b-CCA.

(C) RWC of the leaves (data points are mean values of 6 leaves + SD).

(D) Root length of Arabidopsis seedlings grown for 15 days in Petri dishes with 0, 15, and 150 nM b-CCA. Data are mean

values of 16–23 seedlings + SD. *, Different from CTRL at p < 0.01 (Student’s t test).
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to depend on MBS1 and on the SCL14-dependent detoxification pathway (Shumbe et al., 2017; D’Alessan-

dro et al., 2018). However, the lack of protective effect of b-CCA against high light stress could also be

linked to an effect of light on the b-CCA concentration. As shown in Figure S7, the b-CCA levels in control

(unstressed) leaves were substantially reduced after 24 h in high light (1,500 mmol photonsm�2 s�1 at 7�C air

temperature). Similarly, in b-CC-treated plants that accumulated high amounts of b-CCA, the high light

treatment brought about a marked reduction of the compound. This suggests a rapid degradation or me-

tabolization of b-CCA at elevated light intensities, which may play a role in the inefficiency of b-CCA to

enhance plant tolerance to high light stress.

We tested the involvement of the more recently described SCL14-dependent branch of the b-CC response

(D’Alessandro et al., 2018), by the use of the scl14 knockout mutant and of the OE:SCL14-overexpressing

line. The mutant line showed no difference with the WT in response to the b-CCA treatment (Figure S8),

whereas the SCL14-overexpressing line did show an enhanced resistance to drought stress already

when treated with water, and even stronger drought tolerance when treated with b-CCA (Figures 6A

and 6B). In fact, the RWC of WT plants treated with b-CCA and of OE:SCL14 plants treated with water or

A

B C

Figure 5. The mbs1 Mutation Does Not Suppress the Protective Effect of b-CCA against Drought Stress

(A) Picture of the plants (WT and mbs1 mutant) pre-treated with b-CCA or with water (CTRL) and exposed to water stress

for 7 days.

(B) RWC of WT and mbs1 leaves after 7 days of water stress (mean values of 6 leaves + SD).

(C) Expression levels of several drought-responsive genes (data points are mean of 3 plants + SD). *, Different from CTRL

at p < 0.01 (Student’s t test).

468 iScience 19, 461–473, September 27, 2019



with b-CCA after 7 days of water withdrawal was markedly higher (70%–90% RWC) than that of WT plants

treated with water (20% RWC). Furthermore, the overexpression of SCL14 and the treatment with b-CCA

had an additive effect, because OE:SCL14 plants treated with b-CCA showed an RWC of 60% after

11 days of water withdrawal, indicating an almost doubled resistance compared with that of WT plants

treated with water or with b-CCA. SCL14 is a GIBBERELLIC-ACID INSENSITIVE (GAI), REPRESSOR of

GA1 (RGA), and SCARECROW (SCR) (GRAS) protein involved in the regulation of the xenobiotic detoxifi-

cation response (Fode et al., 2008) and more recently described in the response to photooxidative stress

under excessive light (D’Alessandro et al., 2018). We, thus, quantified the expression levels of four reporter

genes in the SCL14-dependent response: ANAC102, ATAF1, SDR1, and ChlADR, by qRT-PCR (D’Alessan-

dro et al., 2018; Fode et al., 2008). The four reporters were slightly induced at 24 h of treatment with b-CCA,

to levels similar to the ones found in the OE:SCL14, and only the treatment of the SCL14-overexpressing

lines with b-CCA generated a marked induction of the detoxification pathway (Figure 6C). The weak induc-

tion of this pathway by 24-h treatment with b-CCA is in line with the lack of protection of this treatment to

excessive light conditions (Figure S6). At the same time, we cannot exclude that this pathway becomes

important later in the stress, taking into account that drought stress is not yet present at 24 h. Especially

considering that although the scl14 mutant line showed fitness comparable with WT under drought stress

(Figure S8), it is part of a multigenetic family: 33 GRAS proteins are encoded by the Arabidopsis genome

(Bolle, 2004). Furthermore, at least two other members are present in the more stringent LISCL class of

GRAS proteins: AtSCL9 and AtSCL11 (Xu et al., 2015), and AtSCL33 was suggested to be a paralog of

SCL14 (Fode et al., 2008). On the other hand, the amazing fitness of OE:SCL14 plants both under control

conditions and when treated with b-CCA highlights the role of SCL14-dependent cellular detoxification in

plant protection from drought stress. Interestingly, rice plants overexpressing theOsGRAS23 protein, a ho-

molog of AtSCL14, AtSCL11, and AtSCL9, have already been reported as resistant to drought stress (Xu

et al., 2015), supporting our results in Arabidopsis, and further encouraging the use of b-CCA on these

genotypes.

Conversely to b-CCA, pre-exposure of plants for 4 h to an atmosphere containing volatile b-CC led to a

strong upregulation of the SCL14-dependent response (D’Alessandro et al., 2018). Similar to OE:SCL14

plants, the treatment with b-CC led to an enhancement of drought tolerance (Figure S9), as did b-CCA.

We can, therefore, hypothesize that the strong induction of the SCL14 pathway by b-CC, together with

the generation of b-CCA, could lead to an even stronger response than b-CCA by itself, although the

A

B

C

Figure 6. The b-CCA Protective Effect Was Enhanced by Overexpressing SCL14

(A) Picture of the plants (WT and OE:SCL14) pre-treated with b-CCA or with water (CTRL) and exposed to water stress for

11 days and after rewatering.

(B) RWC of WT and OE:SCL14 leaves after 6, 8, or 11 days of water stress (mean values of 6 leaves per point + SD).

(C) Expression levels of marker genes for the SCL14 response (mean values of 3 plants + SD). *, Different from CTRL at p <

O.01; >, different from b-CCA treatment at p < 0.01; +, different from OE:SCL14 at p < 0.01 (Student’s t test).
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Figure 7. b-CCA Protects Tomato Plants during Water Stress in Outdoor Experiments

(A) Leaf water content of tomato plants (pre-treated with b-CCA or with water (CTRL)) during water stress (6 and 7 days

after stopping watering) and recovery (4 days after re-watering) (data are mean values of 8 leaves + SD). The turgid weight

was not measured in this experiment, and consequently water content (not RWC) was expressed as (FW-DW)/DW where

DW is the dry weight and FW is the fresh weight. Data are expressed relative to the water content at time 0.

(B) Picture of the plants pre-treated with b-CCA or with water (CTRL) and exposed to water stress for 6 and 7 days.

(C) Tomato fruits from the first and second truss were harvested when ripe, from plants treated or untreated with b-CCA

and exposed to water stress for 8 days (30 fruits).

(D) Average weight of the harvested tomato fruits (30 fruits).
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volatile nature of b-CC could compromise its use in the field. These results confirm that the acclimatory

response triggered by b-CCA is only part of the response induced by b-CC, whereas b-CC triggers the

b-CCA response indeed.

The Anti-drought Effect of b-CCA Is a Conserved Mechanism

The protection elicited by b-CCA is conserved in several plant species such as pepper (Capsicum),

pansy flower plants (Viola tricolor) (Figure S3), and tomato (Solanum lycopersicum). In fact, we have

exposed tomato plants to a rather moderate drought stress in outdoor experiments to illustrate

the potential of applications of this compound (Figure 7). Similar to Arabidopsis, leaves of b-CCA-

treated tomato plants retained more water (Figure 7A) and showed less symptoms of leaf dehydration

during drought stress (Figure 7B) than untreated plants. After recovery from the water stress period,

tomato fruit size of b-CCA-treated plants was noticeably enhanced compared with that of fruits of

control plants: the fruit size and weight were around 30% higher (Figures 7C, 7D, and S10), whereas

the number of tomatoes was not affected (Figure 7E). The experiment of Figure 7 shows that the pro-

tective effect of b-CCA takes place also under outdoor conditions when drought is combined with

temperature and light changes and can have marked beneficial effects on plant productivity. Further-

more, similarly to what we observed with Arabidopsis, leaves of tomato plants irrigated with b-CCA-

containing water accumulated high amounts of b-CCA (Figure 7F). Interestingly, this accumulation was

not found in the fruit flesh, which contained similar b-CCA levels in treated and untreated plants

(Figure 7G).

Conclusions

We have identified b-CCA as a signaling molecule downstream of the apocarotenoid b-CC, which triggers

the tolerance of plants toward drought stress by activating a branch of the b-CC-dependent signaling

mechanism. In addition, the use of b-CCA in the SCL14- or OsGRAS23-overexpressing plants could further

boost the phytoprotective effect. This work provides thus a protective agent that could be exploited to in-

crease plant tolerance to drought using simple application procedures. As shown with tomato fruits, the

use of b-CCA under natural conditions enhanced biomass productivity after a water stress period. Previous

attempts to enhance plant tolerance to drought by application of exogenous compounds essentially

concern the apocarotenoid phytohormone ABA (Waterland et al., 2010; Wei et al., 2015) or its synthetic ag-

onists, quinabactin (Okamoto et al., 2013), which can reduce transpirational water losses through stomatal

closure (Munemasa et al., 2015). b-CCA has a different mode of action (Figures 2 and 3) and possesses some

advantages over those anti-transpirants, including low cost, stability, and protective action independent of

stomatal regulation, thus limiting the effects on carbon acquisition. In relation with the latter feature,

3-week application of b-CCA was found to have no inhibitory effect on plant growth under unstressed con-

ditions (Figure S11), indicating that this compound is not harmful to plants in the long term, at the applied

concentrations. This is at variance with ABA, which was reported to reduce the growth rate of shoots both

under osmotic stress and under normal conditions (Agehara and Leskovar, 2012, 2014; Meguro and Sato,

2014). Acetate is another metabolite that was recently shown to provide some protection against drought

stress (Kim et al., 2017). However, its phytotoxicity is well known and is even exploited in the elaboration of

herbicides (Abouziena et al., 2009), and this may limit its applicability as a phytoprotector. Independently of

the molecular mechanisms that remain to be clarified, the protective effects of b-CCA reported here show

that apocarotenoids different from ABA are involved in drought tolerance and are potential anti-drought

agents.

Limitations of the Study

The protective action of b-CCA against the damaging effects of drought stress has been shown here in

several plant species and under different environmental conditions. These findings should be completed

in the future by field experiments, which should also include monocot crops such as wheat, rice, and maize.

b-CCA is a signalingmolecule regulating the expression of nuclear genes, finally enhancing plant tolerance

to drought stress, but the exact mechanism behind this resistance remains to be clarified. In particular, the

Figure 7. Continued

(E) Average number of fruits per plant (data points are mean values of 8 plants + SD).

(F) and (G) b-CC and b-CCA levels in tomato leaves (mean values of 3 leaves + SD) (F) and in tomato fruits (mean values of 3

fruits + SD) (G). * and > different at p < 0.01 and p < 0.05 (Student’s t test).
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involvement of the SCL14-dependent detoxification pathway in response to b-CCA and how a higher leaf

water content is kept in b-CCA-treated plants remain to be deciphered in more detail.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.08.003.
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Supplemental Information 

Transparent Methods 

Plant growth and stress treatment. Wild type (WT, ecotype Col 0),  ost2-2, mbs1, scl14 and 

abi1 mutant Arabidopsis thaliana lines and the SCL14-overexpressing line (OE:SCL14) were 

grown for 5 weeks in short-day conditions (8h/16h, day/night)  under  a  moderate  photon  

flux  density  (PFD)  of  ~150  µmol  photons  m-2 s-1, controlled temperature (20 °C/18 °C, 

day/night) under a relative air humidity of 65 %. For the drought experiments, Arabidopsis 

plants were watered with 25 ml per pot of water acidified with citric acid (1.5 mM) or of water 

containing 1.5 mM -CCA. Water stress was subsequently applied by stopping watering. Citric 

acid was used to acidify water so as to expose control plants and -CCA-treated plants to the 

same pH (pH ~4). We can therefore exclude that the plant responses to -CCA are due to a pH 

effect.  However, no difference was observed between control plants watered with acidified 

water and not-acidified water in terms of drought tolerance.  Pepper and pansy plants were 

bought on the local market and acclimated in a greenhouse for 1 week. Drought stress was 

applied by stopping watering after the treatment with 500 ml water or 0.15 mM -CCA per 

pot. Tomato plants (Solanum lycopersicum, cultivar Rio grande) were grown in 80-L pots (8 

plants per pot). When fruits in first truss were mature and started changing their color, 

drought stress was applied by stopping watering after the treatment with 4 L water or 1.5 mM 

-CCA per pot. Treatments of Arabidopsis plants with volatile β-CC were done in transparent 

airtight plexiglass box (Ramel et al., 2012).   

 

β-cyclocitral oxidation. 1 ml of pure β-cyclocitral (Sigma-Aldrich) was transferred in 1 L of bi-

distilled water, in a closed container, and agitated for 1 d. Then the container was opened and 

agitated for 1 additional day.  50 l samples of the solution were taken at different times for 

-CCA analyses.  

 

GC/MS measurements. Although -CC is a volatile compound, emission of -CC by 

photosynthetic organisms is very low (Garcia-Plazaola et al. 2017) indicating that it is trapped 

in the plant tissues. So, solvent extraction was used to quantified -CC and -CCA. The lipid 

fraction was extracted from the samples (aqueous solutions or about 500 mg plant tissues) in 

4 ml tert-Butyl methyl ether plus 1 ml 1mM HCl, containing 4-nonanol as internal reference 
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(10 g). After centrifugation, the supernatant was collected, evaporated and analyzed by GC-

MS. β-CC and -CCA were quantified on the most probable ion (m/z 137 and 153, respectively) 

in SIM analyses (Ramel et al., 2012). The mass spectrum of -CCA can be found in (Tomita et 

al., 2016). Pure -CCA can be produced as reported in (Tomita et al., 2016).  

 

Stomatal conductance measurements. Stomatal conductance was analyzed on at least two 

leaves per plants on six plants per condition, using an AP4 diffusive porometer (Delta-T 

Devices, Cambridge, UK). Two readings were taken per leaves and averaged. Measurements 

were made on the abaxial leaf surface between 1 h and 2 h after the start of the illumination. 

Stomatal conductance measurement by IRGA were performed with a LI-COR 6400 (LiCor Inc., 

Lincoln, NE, USA) equipped with a clamp-on leaf cuvette (6400-40 Leaf Chamber Fluorometer; 

LiCor Inc.). Leaf temperature was maintained at 22 °C, and leaf-to-air VPD was at 2 kPa. A 10% 

blue and 90% red light was provided from a LED array on top-side cuvette and set to 500 µmol 

m-2 s-1. Stomatal conductance was analyzed on one leaf per plant on six plants per condition, 

after 30 minutes of equilibration.  

 

Relative water content (RWC). Six leaf disks per condition were cut from leaves of -CCA-

treated or -untreated plants and weighted (FW). For measuring the turgid weight (TW), 

samples were submerged with bi-distilled water and left at 4°C for 16 hours. Dry weight (DW) 

was measured after 16h at 70°C in a ventilated oven. RWC was measured following the 

formula (FW-DW)/(TW-DW) x 100.  

 

Ion Leakage. Cell membrane stability can be estimated by the use of electrolyte leakage 

method (Bajji et al., 2002). Six leaves per condition were cut from -CCA-treated or -untreated 

plants and weighted (FW), and placed in 25 ml of bi-distilled water. Conductivity of the 

solution was measured with a DIST-5 Hanna conductometer after 2 h of mild agitation and 

after boiling the samples. The values were normalized on the FW and the values after boiling 

are reported as the maximal value. 

 

Leaf osmotic potential. Leaf osmotic potential was measured on freeze-thawed leaf discs 

using C-52 psychrometer chambers and Psypro control unit (Wescor, Logan, UT, USA). Leaf 

discs of 7 mm diameter were placed in sealed plastic tubes, frozen in liquid nitrogen and kept 
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at -80 °C. For measurements, the discs were defrosted for 2 min and transferred onto sample 

holders of psychrometer chambers. To speed up the equilibration time of water potential in 

the chambers, leaf discs were pierced several times before enclosure (Kikuta and Richter, 

1992).  

 

RNA isolation and qRT-PCR. Total RNA was isolated from 100 mg leaves using the Nucleospin® 

RNA Plant kit (Macherey-Nagel). The concentration was measured on a NanoDrop2000 

(Thermo Scientific, USA).  First strand cDNA was synthesized from 1 µg total RNA using the 

PrimeScript™ Reverse Transcriptase kit (Takara, Japan). qRT-PCR was performed on a 

Lightcycler 480 Real-Time PCR system (Roche, Switzerland). 3 µl of a reaction mixture 

comprising SYBR Green I Master (Roche, Switzerland), 10 µM each of forward and reverse 

primers and water, was added to 2 µL of a 10-fold diluted cDNA sample in a 384 well plate. 

The PCR program used was: 95 °C for 10 min, then 45 cycles of 95 °C for 15 s, 58 °C for 15 s 

and 72 °C for 15 s.  At least three biological replicates were performed for each gene tested. 

Primers for all genes examined (Table S1) were designed using the Primer3Plus software. 

Profilin-1 (PRF1, AT2G19760) and Cyclophilin 5 (CYP5, AT2G29960) were used as reference 

genes for the normalization of gene expression levels. 

 

Root growth measurements 

All experiments were performed on WT Arabidopsis (Col-0). Seeds were surface sterilized in 70 % 

ethanol plus 0.05 % Triton X 100 and then in 100 % ethanol. Seeds were plated in square petri dishes 

containing Murashige and Skoog medium (MS– ½) supplemented with 0.5 g/L MES-KOH pH 5.7, 0.8 % 

Plant Agar (Duchefa), and 1 % sucrose; stratified for 2 days at 4°C in the dark, and placed to grow 

vertically in a growth chamber under a long-day light period (16 h light/ 8 h dark) at 150 mol m-2 s-1. 

0.5 l or 5 l of a 1.5 mM solution of -CCA was added to 50 ml of growth medium (corresponding to 

15 or 150 nM). Root growth was measured after 15 d. 

 

Stomatal density and stomatal index 

Epidermal fragments isolated from leaves of 4-week old Arabidopsis plants were attached to 

microscope coverslips by using silicone adhesive (Telesis 5) and incubated in a bathing solution (30 mM 

KCl, 10 mM Mes/Tris, pH 6). Stomata were analyzed by using an inverted microscope (Leica LMD-6000) 

with a 40x objective. Stomatal index was calculated by normalizing the number of stomata on the 

number of epidermal cells x 100. 
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Statistical analysis. All experiments were repeated at least two times, and the images 

represent typical examples. The values are represented as the means + standard deviation. 

The statistical significance was tested using Student’s t-test (two-tailed, unequal variances). 

Sample size is reported in figure legends as number of plants per experiment. 
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Table S1. Primer list for qRT-PCR, related to Figure 1, Figure 2, Figure 5 and 
Figure 6. 
 
AT5G61820   for: TGGGTTGATTGGGACAGCTC 
   rev: TCACCTCGTATTCCACATGGC 
 
AT5G63790  for: AGCTTCCAGAAATGGCGTTGT 
   rev: AATAACCGGTTCCAGCTGCC 
  
AT3G04000  for: CGCATTATCAGTGTGAACACAAGAG 
   rev: TTTGAACCAGTGATGTTGAGAGGAG 
 
AT3G28580  for: ATGGCGATGATGGGTCAGTT 
   rev: GGGTAGAAGCGACCGAAGAG 
 
AT5G16970  for: CCATGGTAAGAATGTTGGGAAACAA 
   rev: AAAACAAAAACCACCCACACAAACT 
  
AT4G27410  for: CCACCAGGTTTTAGATTTTATCCG 
   rev : CAAAGCCTTACTTGGCAAATCC 
 
AT5G05410  for: TCGTCCCCTATAGATTGTGTTGT 
   rev : GCCACAGTAGTACCGTCACC 
 
AT1G01720  for: CCATGGGAGCTTCCTGGTTT 
   rev : ACGCGAACCGTTGGGATATT 
 
AT5G52300  for : CACAGCTTTGGAAAATGGAGTCA 
   rev : CATGATGCTCTTCTTCTTCTGGAT 
 
AT5G52310  for : GCACCAGGCGTAACAGGTAA 
   rev : TCGGAAGACACGACAGGAAA 
 
AT5G25610  for : CCAACTCCCAAAAATGGCGA 
   rev : CGCAATCGCCACTACCATGA 
 
AT1G42990  for : GAAGGAGACGATGATGCTGTGGCT 

rev : AGCAGGGAACCCAACAGCAGACT 
(spliced)  
 

CYP5   for: CTGGACCAGGTGTACTTTCAATGG 
   rev: AAACACCACATGCCTTCCATCTAAC 
  
PRF1   for: AGAGCGCCAAATTTCCTCAG 
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   rev: CCTCCAGGTCCCTTCTTCC 
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