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Abstract 12 

Target Of Rapamycin (TOR) is a conserved eukaryotic phosphatidylinositol 3-kinase (PI3K)-related kinase 13 

(PIKK) that regulates growth and metabolism in response to environment in plants and algae. The study of 14 

the plant and algal TOR pathway largely depends on TOR inhibitors first developed for non-photosynthetic 15 

eukaryotes. In animals and yeast, fundamental works on the TOR pathway have benefited from the 16 

allosteric TOR inhibitor rapamycin and more recently from ATP-competitive TOR inhibitors (asTORis) 17 

that circumvent the limitations of rapamycin. The asTORis, developed for medical applications, inhibit 18 

TORC1 more efficiently than rapamycin and also inhibit rapamycin-resistant TOR complexes (TORCs). 19 

This review will present knowledge on TOR inhibitors from the mammalian field and underline 20 

important consideration for plant and algal biologists. We will discuss the use of rapamycin and 21 



2 

 

asTORis in plants and algae and conclude with guidelines for physiological studies and genetic screens 22 

with TOR inhibitors. 23 

 24 

Introduction 25 

Rapamycin together with the structurally related drug FK506 are immunosuppressive agents that are 26 

reciprocal antagonists of lymphocyte cell activation (Sigal and Dumont, 1992). Rapamycin stood out 27 

for its role in second phase of lymphocyte activation by inhibiting cell cycle and subsequently 28 

proliferation (Aagaard-Tillery and Jelinek, 1994). A recent overview of rapamycin (Yoo et al., 2017) 29 

describes the respective mechanisms of immunosuppressive action of FK506 that interferes with the 30 

phosphatase calcineurin and of rapamycin that interferes with the serine/threonine kinase “Target Of 31 

Rapamycin” (TOR). Both compounds bind to a single domain of the cytosolic immunophilin FKBP12 32 

(12 kDa FK506 Binding Protein). Briefly, the FKBP12-rapamycin duo binds to the so-called FRB 33 

(FKBP12-Rapamycin Binding) domain of TOR therefore creating a ternary complex that inhibits TOR 34 

kinase activity through allosteric interaction. Throughout eukaryotes, TOR progressively emerged as a 35 

hub for orchestrating cellular anabolic and catabolic processes that basically characterize growth 36 

homeostasis, i.e., cell/organ size and cell proliferation as well as cell components turnover. “In simple 37 

terms, cell growth is the accumulation of mass. But this description short changes a process that is 38 

vastly more complex and interesting” (Thoreen, 2017). TOR interconnects numerous inputs and 39 

outputs of anabolism functions while repressing autophagy, ensuring growth homeostasis, i.e, the 40 

building up, the “stability” or survival of cells up to their aging and senescence or in response to any 41 

imbalance caused by stress, disease or energy changes (Saxton and Sabatini, 2017; Thoreen, 2017). 42 

Rapamycin was decisive for the discovery of TOR protein, basic TOR complexes (TORCs) 43 

components and targets (Alessi et al., 2009; Huang et al., 2003), yet the recent development of ATP-44 

competitive TOR inhibitors (active site TOR inhibitors, asTORis) brought new tools to study more in 45 
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depth the TOR pathway. Furthermore, since the treatment of cancer by rapamycin and its derivatives 46 

rapalogs gave disappointing results, these second generation inhibitors also provided new possibilities 47 

of clinical trials aiming to cure cancer and other pathologies (Martelli et al., 2018). In the context of 48 

studying TOR functions in plants, we aim to state here the use of rapamycin and of asTORis with an 49 

emphasis on their potential for pharmacogenetic studies in plant and algae. 50 

 51 

Rapamycin and TOR complexes from yeast and mammals to plants and algae 52 

For the historical steps on the discovery and naming of TOR, we invite the reader to rely on very 53 

informative articles of DA Sabatini and MN Hall (Hall, 2016; Sabatini, 2017). The TOR protein kinase 54 

was first identified from a genetic screen of Saccharomyces cerevisiae (referred hereafter as yeast) 55 

lines that were resistant to rapamycin (Heitman et al., 1991). Rapamycin-resistant lines mostly carried 56 

recessive missense mutations resulting in amino acid substitutions in the FKBP12 protein, but 57 

dominant missense mutations in two genes named TOR1 and TOR2 (Target Of Rapamycin 1 and 2) 58 

were also identified. Further studies revealed that mutations of a conserved Serine residue within the 59 

FRB domain of TOR1 or TOR2 confers dominant resistance to rapamycin (Stan et al., 1994). Soon 60 

after, three groups identified the “physical target of rapamycin” in mammals by biochemical 61 

approaches using rapamycin and FKBP12. TOR is a member of the atypical Ser/Thr-protein kinase of 62 

the PIKKs family that all play vital role in growth and survival and also includes essential regulators of 63 

the DNA damage response such as ATM (Ataxia-Telangiectasia Mutated), ATR (ATM- and Rad3-64 

Related) and DNA-PK (DNA-dependent Protein Kinase) (De Cicco et al., 2015). Rapamycin has been 65 

an indispensable tool for studying the roles of the TOR pathway in both yeast and animals but 66 

rapamycin effects are more limited in animals on protein synthesis, autophagy and proliferation (Fig. 67 

1A) and varied widely among cell types (Mukhopadhyay et al., 2016; Sarbassov et al., 2006; Thoreen, 68 

2017; Zhao et al., 2015). Both genetic and biochemical studies identified two basic TOR complexes: 69 

The rapamycin sensitive TORC1 containing RAPTOR/KOG1 (mammalian Regulatory Associated 70 
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Protein of TOR/yeast Kontroller Of Growth 1) and LST8 (Lethal with SEC13 protein 8), and the 71 

rapamycin-insensitive TORC2 containing LST8 and RICTOR/AVO3 (mammalian Rapamycin-72 

Insensitive Companion of mTOR/yeast Adheres-VOraciously-to-tor-2 protein 3). TORC2 components 73 

and downstream effectors have been difficult to characterize due to the absence of specific drugs that 74 

selectively inhibit this complex (Gaubitz et al., 2016; Sparks and Guertin, 2010) and because under 75 

prolonged (chronic and not acute) rapamycin treatment, TORC2 assembly was impaired (Sarbassov et 76 

al., 2006). TORC2 is involved in cell survival and cytoskeleton regulation through different AGC 77 

family kinases including a key readout target kinase AKT, which phosphorylation requires 78 

SIN1/AVO1 (mammalian Stress-activated protein kinase-INteracting protein 1/yeast Adheres-79 

VOraciously-to-target-of-rapamycin-2 protein 1), another essential component of TORC2 (Gaubitz et 80 

al., 2016). Noticeably, SIN1 isoforms led to suggest occurrence of 3 different TORC2, showing 81 

plasticity of TOR complexes. A detailed composition of yeast and mammals TORC1 and TORC2 and 82 

the full range of downstream targets through which TOR drives cell growth has recently fully emerged 83 

and is extensively reviewed elsewhere (Ben-Sahra and Manning, 2017; Eltschinger and Loewith, 84 

2016; Gaubitz et al., 2016; Gonzalez and Rallis, 2017; Jhanwar-Uniyal et al., 2017; Saxton and 85 

Sabatini, 2017).  86 

 The control of cell growth by TORC1 in response to nutrients was early demonstrated in yeast 87 

(Barbet et al., 1996) and later on transcriptional profiling showed that mammalian TORC1 up-88 

regulates sets of genes involved in lipid/sterol, nucleotide and protein synthesis, as well as genes 89 

involved in mitochondrial oxidative function, glycolysis and the pentose phosphate pathway and 90 

conversely down-regulated genes involved in starvation and energy production (Duvel et al., 2010; 91 

Peng et al., 2002). Briefly, under adequate conditions including growth factors, amino acids and AMP 92 

to ATP and/or ADP to ATP ratios, TORC1 phosphorylates two foremost targets involved in protein 93 

synthesis commitment and elongation, the eIF4E-Binding Protein1 (4E-BP1) and the ribosomal 94 

protein S6 Kinases (S6Ks) respectively. However, it is worth mentioning that the clear cut contribution 95 
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of each TORC1-S6K1/S6K2 and TORC1-4E-BP1 axis in regulating cell cycle and proliferation as 96 

well as translation has been hard to delineate (Cunningham et al., 2007; Dowling et al., 2010a; 97 

Magnuson et al., 2012; Meyuhas and Dreazen, 2009; Thoreen, 2017). First, their kinetics of 98 

phosphorylation do not last the same and their different action in the regulation of protein synthesis 99 

machinery, which involves additional TOR targets, made it complex to decipher (Dowling et al., 100 

2010a; Magnuson et al., 2012; Meyuhas, 2015; Thoreen, 2017). As such, the TORC1 target LARP1 101 

(La-Related Protein 1) is a translation repressor that, according to a recent model, binds to the 5’ end 102 

of mRNAs and thus competes with the translation initiation complex eIF4F (including eIF4E) and to 103 

some extent with S6K1 (Philippe et al., 2018). TORC1 controls protein turnover through regulating 104 

UPS (Ubiquitin Proteasome System)- and UPS targeted-proteins abundance (Rousseau and Bertolotti, 105 

2016; Zhao et al., 2016) as well as by canonical autophagy induction through regulating activity of the 106 

kinases ULK1 and 2/ATG1 (Human Uncoordinated-51-like autophagy activating kinase 1and 2/yeast 107 

AuTophaGy related 1) (Velazquez and Jackson, 2018; Zhao et al., 2015). Remarkably, due to 108 

reversible control of ULK1 by mTOR and AMP-activated Protein Kinase (AMPK) that senses low 109 

energy levels, mammalian growth homeostasis is orchestrated through dynamic signaling interplay of 110 

the triad of kinases, AMPK-TOR-ULK1. Under low energy, if ULK1 is activated through 111 

phosphorylation by AMPK, it can be impeded by TORC1 and in turn, ULK1-mediated 112 

phosphorylation can decrease activity of AMPK, establishing a negative feedback loop targeting the 113 

AMPK-mTOR signaling axis (Dunlop and Tee, 2013; Luo et al., 2015). Also, a positive regulation 114 

loop occurs through phosphorylation by TOR and ULK1 of a component in autophagosome formation, 115 

which joins regulation of effectors by phosphorylation to regulation by ubiquitylation (Nazio et al., 116 

2013).  117 

 More extensively, the crosstalk between different branches of the TOR network is nowadays 118 

upgraded by the emerging view that negative feedback loops where downstream targets become 119 

upstream regulators might be critical in the TOR pathway (Eltschinger and Loewith, 2016). As such, 120 
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the negative feedback loop of the TOR-S6K-IRS1 (Insulin Receptor Substrate 1) axis in response to 121 

TORC1 activation that is mediated by S6K1 attenuates PI3K-AKT signaling by phosphorylating IRS1 122 

and RICTOR leading to AKT kinase inhibition. These two examples of feedback loops state the 123 

importance of characterizing cell developmental or metabolic status when deciphering the role of 124 

specific TOR pathway effectors as physiology “customizes” TOR signaling backbone status. For 125 

instance, in the field of TOR-driven aging, cell entry into senescence is decelerated by rapamycin, 126 

preventing irreversible loss of proliferation capacity through inhibiting the senescence-associated 127 

secretory phenotype of cells without affecting cell cycle arrest (Wang et al., 2017). This led defining 128 

new concepts and so new terms in order to delineate clear-cut functions of effectors in cell cycle arrest 129 

and/or senescence (Blagosklonny, 2012). Another important feature is that TOR basic targets S6Ks, 130 

4E-BPs, ULK1 or components of TOR complexes (SIN1, RAPTOR, RICTOR) very often carry 131 

multiple phosphorylation sites, which likewise helps connecting different signaling pathways to the 132 

TOR pathway to maintain cell homeostasis but makes analysis more complex (Batool et al., 2017; 133 

Meyuhas, 2015; Tavares et al., 2015). At last but not least, the recent discovery of new TOR 134 

complexes that do not contain RAPTOR or RICTOR reveals the extent of TOR function. As such, a 135 

complex TOR-RanBP2 (Ran Binding Protein 2) that ensures dynamic flux of nuclear import of 136 

ribosomal proteins (Kazyken et al., 2014), a complex TOR-GIT1 (G-protein-coupled receptor kinase-137 

interacting protein 1) essential for astrocyte survival (Smithson and Gutmann, 2016), a rapamycin 138 

insensitive TORC3 including at least LST8 and an unknown protein phosphorylating mSIN1 (Luo et 139 

al., 2015), or a new rapamycin sensitive TORC acting on mRNA translation (Meyuhas, 2015) have 140 

been identified. Another cytoplasmic TORC3 activated in cancer solely contains mTOR, 4E-BP1 and 141 

the transcription factor ETV7 (leukemia virus E26 Transformation-specific Variant 7) but not the 142 

TORC1/2 crucial components LST8, RAPTOR, RICTOR or SIN1 (Harwood et al., 2018). TOR 143 

complexes can have various intracellular localization, close to either the nucleus or the perinuclear 144 

region, lysosomes, mitochondria-associated endoplasmic reticulum membranes or plasma membrane 145 
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depending on nutrient status (Betz and Hall, 2013; Jhanwar-Uniyal et al., 2017). This also holds true 146 

for the target S6K (Tavares et al., 2015) and altogether this makes TORCs eclectic, in coherence with 147 

the role of TOR in cell growth homeostasis. Altogether, the discovery of new TORCs, their diverse 148 

intracellular localization, the interaction of TOR- and other- signaling pathways and the multiple 149 

phosphorylation sites of TOR pathway components reflect the deployment of TOR signaling and the 150 

importance to decipher its role in clearly defined cellular contexts.  151 

In plants, early studies benefited from the conservation of TOR among species and the libraries 152 

of Arabidopsis insertion mutants which helped find knock-out mutants of homologs of yeast and 153 

mammalian genes encoding basic members of TORCs. Thus, Arabidopsis genome contains one TOR 154 

gene (AtTOR) (Menand-2002), two RAPTOR genes (Anderson et al., 2005; Deprost et al., 2005; 155 

Mahfouz et al., 2006; Rexin et al., 2015; Salem et al., 2018) and two LST8 genes (Moreau et al., 156 

2012). Arabidopsis raptor mutants are still under study and sporadic embryonic arrest has been 157 

controversial likely due to poor quality of some insertion mutants (Rexin et al., 2015), making it 158 

different from mammals where RAPTOR ablation is associated with male sterility (Xiong et al., 159 

2017b). LST8s function is still in progress since only lst8-1 mutant phenotype and not lst8-2 is 160 

documented, yet altered growth and particularly metabolomic phenotype of lts8-1 reminds amino acid 161 

accumulation observed in yeast lst8 mutants (Moreau et al., 2012). Thus, in the absence of RICTOR 162 

homologs, only basic TORC1 is characterized in plants and algae until now (Dobrenel et al., 2016a; 163 

Perez-Perez et al., 2017; van Dam et al., 2011). The main plant TOR targets include S6K1 and S6K2, 164 

which are both related to mammalian S6K1, and the PP2A (Protein Phosphatase 2A) regulatory 165 

subunit TAP46 (Ahn et al., 2011; Henriques et al., 2010; Mahfouz et al., 2006; Xiong and Sheen, 166 

2012). TOR negatively regulates autophagy also in plants and green algae (Liu and Bassham, 2010; 167 

Perez-Perez et al., 2010) and even though convergence of UPS and autophagy has been demonstrated 168 

in plants (Marshall et al., 2015) TOR dependent regulation of UPS is still unknown. Strikingly, the 169 

catalytic subunit KIN10 of SnRK1 (Snf1-Related protein Kinase 1), the plant homolog of mammalian 170 
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AMPK/yeast SNF1, regulates autophagy through inhibiting TOR and SnRK1 is not regulated by the 171 

AMP/ATP ratio similarly to yeast SNF1 and contrarily to mammalian AMPK (Soto-Burgos and 172 

Bassham, 2017). The position of the ATG1/13 kinase complex in autophagy is also central in plants 173 

with four isoforms of the ATG1 kinase, two of its partner ATG13 (Suttangkakul et al., 2011) and 174 

accessory ATG proteins such as ATG11 (Li and Vierstra, 2014) reported in Arabidopsis, yet ATG1 175 

phosphorylation by TOR has not been demonstrated (Wang et al., 2018a). Thus to control autophagy 176 

in plants, TOR might target ATG13 to regulate ATG1 similarly to yeast (Kamada et al., 2010) rather 177 

than regulating both ATG13 and ULK1 as in mammals (Kim et al., 2011). Interestingly, Arabidopsis 178 

ATG1 has a dual role through acting as a regulator and as a substrate of autophagy, likely a particular 179 

feature of plants (Bassham, 2009; Suttangkakul et al., 2011). However, as plant autophagy effectors 180 

and processes are still under study (Masclaux-Daubresse et al., 2017; Wang et al., 2018a), this field 181 

requires more investigation. Other plant TOR targets were also identified (Shi et al., 2018), including 182 

the transcription factors E2FA and E2FB which phosphorylation in vitro is lost by treatment with 183 

ATP-competitive inhibitors (Torins, see below) (Li et al., 2017; Xiong et al., 2013), or the hormone 184 

abscisic acid-receptor PYL1 (PYrabactin resistance 1-Like 1), which activity is associated with stress 185 

and senescence (Wang et al., 2018b). In the absence of plant homologs of 4E-BP1, the axis TORC1-186 

S6Ks is nowadays the most studied link between TOR and translation in plants, mainly through read 187 

out of ribosomal protein S6 phosphorylation (Dobrenel et al., 2016b; Mahfouz et al., 2006; Xiong and 188 

Sheen, 2012). However, the recent discovery of a Conserved Binding of eif4E1 (CBE1) plant protein 189 

(Patrick et al., 2018) opens new possibilities of link between TOR and translation initiation in plants. 190 

In Chlamydomonas reinhardtii, recent phosphoproteomic studies identified TOR-inhibition dependent 191 

phosphorylation of proteins including ATG7, S6K, the ribosomal protein S6 and LARP1 (Roustan and 192 

Weckwerth, 2018; Werth et al., 2018) showing conservation of effectors in algae and opening new 193 

avenues of TOR pathway characterization. In the red alga Cyanidioschyzon merolae, a 194 

phosphoproteomic analysis with the a transgenic strain overexpressing yeast FKBP12 identified 195 
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GLG1, an authentic GLycoGenin which phosphorylation is cancelled by rapamycin (Pancha et al., 196 

2018). As systems biology and omics now start connecting TOR pathway with specific aspects of 197 

plant and algae physiology, new TOR targets could be discovered soon in photosynthetic organisms 198 

(Caldana et al., 2013; Dobrenel et al., 2016a; Mubeen et al., 2018). New TOR complexes might exist 199 

in plants and algae, as discovered in animals, but their future identification would need more specific 200 

biochemical or genetic studies. Altogether, these data show that the TOR pathway includes conserved 201 

and specific effectors in photosynthetic organisms and thus its study benefits from outcomes from 202 

yeast and mammalian studies, as well as from plant and/or algae specific investigations. 203 

 204 

Rapamycin-FKBP12 -TOR inhibition in plants and algae: not an easy game  205 

In algal species, rapamycin sensitivity is species-dependent and growth inhibition level (GI %) and 206 

doses (nM) are highly variable as they range from (40%; 100 nM) for Chlamydomonas reinhardtii 207 

(Crespo et al., 2005), to (40%; 50,000 nM) for Euglena gracilis (Mukaida et al., 2016), to (slight 208 

effect; 10,000 nM) for the diatom Phaeodactylum tricornutum (Prioretti et al., 2017) up to (0%; 1,000 209 

nM) for the red algae C. merolae (Imamura et al., 2013). However, chlorophyll content decreased in E. 210 

gracilis and C. merolae from 1,000 nM but not in C. reinhardtii (Mukaida et al., 2016). A rapamycin 211 

resistant FKBP12 loss-of-function mutant in C. reinhardtii allowed to demonstrate that rapamycin 212 

inhibits proliferation via the rapamycin-FKBP12 interaction, a strong argument for the further use of 213 

rapamycin in this alga (Crespo et al., 2005). These few data show that rapamycin is not a general 214 

potent TOR inhibitor in algae species, reminding the variety of background responses of mammalian 215 

cell lines. In vascular plants, rapamycin hardly inhibits growth of various genera including 216 

Arabidopsis, Nicotiana, cotton or potato plantlets with some peculiar cases like tomato where partial 217 

growth inhibition has been observed (Deng et al., 2017; Deng et al., 2016; Mahfouz et al., 2006; 218 

Menand et al., 2002; Montane and Menand, 2013; Ren et al., 2012; Song et al., 2017; Sormani et al., 219 

2007; Xiong et al., 2016). Insensitivity or weak sensitivity to rapamycin has been attributed to low 220 
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ability of plant FKBP12 proteins to form the inhibitory ternary complex with rapamycin due to lack of 221 

conservation of aminoacid residues critical for interaction with rapamycin (Supplementary Fig. S1) 222 

(Choi et al., 1996; Sormani et al., 2007; Xu et al., 1998). A similar situation was described in red algae 223 

(Imamura et al., 2013). There is no straightforward evolutionary explanation for this particular feature 224 

of FKBP12s of plants and some algae, but we could speculate the selection of new FKBP12 225 

endogenous peptidyl-prolyl isomerase functions or a selective advantage to resist to the soil 226 

Streptomycete that produces rapamycin (Vezina et al., 1975). Neither the yeast two-hybrid analysis 227 

nor an in vitro interaction assay could demonstrate a rapamycin-dependent interaction between 228 

Arabidopsis FKBP12 (AtFKBP12) and the AtTOR-FRB domain but this domain was able to form a 229 

complex with human (Hs) or yeast FKBP12 (Mahfouz et al., 2006; Menand et al., 2002; Sormani et 230 

al., 2007). As a consequence, Arabidopsis plants could be made sensitive to rapamycin by 231 

overexpression of yeast or human FKBP12 (Deng et al., 2016; Leiber et al., 2010; Ren et al., 2012; 232 

Sormani et al., 2007; Xiong and Sheen, 2012). A yeast-FKBP12 overexpressing line in the red alga C. 233 

merolae similarly confers sensitivity to 10-500 nM rapamycin (Imamura et al., 2013). However, to our 234 

opinion, the dogma of plant TOR kinase inhibition by rapamycin through transgenic FKBP12 235 

overexpression deserves little bit more attention.  236 

Several groups reported that Arabidopsis seedlings grown on solid media are insensitive to 237 

rapamycin up to ca. 10 µM (Deng et al., 2016; Mahfouz et al., 2006; Ren et al., 2012; Sormani et al., 238 

2007). Such concentration range is 100-1000 times the concentration that inhibits proliferation of yeast 239 

(100 nM block cells in G1 with large unbudded cells as the terminal phenotype (Heitman et al., 1991) 240 

or that reduces cell size and proliferation of lymphocytes B cells (EC50 0.005-0.5 nM and maximal 241 

inhibition of ca. 50-70% up to 100 nM) or of mouse embryonic fibroblasts (50-250 nM) (Sarbassov et 242 

al., 2006; Thoreen and Sabatini, 2009; Wicker et al., 1990). Later, AtTOR-dependent phosphorylation 243 

at P-T449 (equivalent to T389 in animal) of AtS6K1 overproduced in transfected protoplasts was 244 

found inhibited by far much lower concentrations of rapamycin when FKBP12 was co-expressed 245 
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compared to the AtS6K alone. Indeed, 100 to 1000 times lower concentration of rapamycin was 246 

needed to erase S6K1 P-T449 when S6K1 was overexpressed in combination with either AtFKBP12 247 

or HsFKBP12 respectively (Xiong and Sheen, 2012). This showed that a high amount of HsFKBP12 248 

“optimize” the titration of rapamycin to inhibit plant TOR. Thus, the affinity to rapamycin and the 249 

stoichiometry of each component of the ternary complex might influence the stability of TOR complex 250 

conformation shift and therefore the outcome of TOR inhibition. In other words, the poorest the 251 

interaction FKBP12-rapamycin is, the highest the rapamycin concentration is required to erase 252 

AtS6K1 P-T449. Thus, if we consider that this is the rule despite the peculiar physiological context of 253 

protoplasts incubated in mannitol and KCl in which it has been studied (no nutrients), a low amount of 254 

AtFKBP12 together with a poor binding of endogenous AtFKBP12 to AtTOR can explain why plants 255 

are poorly sensitive to rapamycin. Deng et al. similarly developed transgenic plants overexpressing 256 

FKBP12 coming from Arabidopsis, yeast and human but showed that AtFKBP12 overexpression 257 

could not make plants sensitive to rapamycin (Fig. 1C) (Deng et al., 2016). This discrepancy with the 258 

data of Xiong and Sheen (Xiong and Sheen, 2012), shows the possible drawback of building 259 

transgenic lines to overexpress FKBP12 (FKBP12OX). Yet, the overexpressed yeast FKBP12 was more 260 

efficient than HsFKBP12 to increase plant sensitivity to rapamycin (Fig. 1C) (Deng et al., 2016).  261 

 Growth conditions also influence rapamycin sensitivity as Arabidopsis seedlings grown in 262 

liquid culture were reported sensitive to rapamycin (Deng et al., 2016; Xiong et al., 2013; Xiong and 263 

Sheen, 2012). An interesting explanation for the discrepancy between plants grown on liquid and solid 264 

media was proposed by M Ren and colleagues who suggested that a hypoxia stress could facilitate 265 

rapamycin action in Arabidopsis (Deng et al., 2016). Indeed, growth is dramatically slowed down in 266 

liquid media as after 9 days, seedlings roots were around 2-3 cm long (Xiong and Sheen, 2012), which 267 

is around 2-3 times less than vertically grown seedlings on solidified medium (Montane and Menand, 268 

2013; Ren et al., 2012). It is therefore likely that hypoxic stress might upregulate AtFKBP12 269 

expression as FKBPs are reported to have a role in stress response (Dong et al., 2018; Geisler and 270 
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Bailly, 2007) and/or that AtTOR is largely inhibited in this condition which might make AtTOR 271 

activity easier to be inhibited by rapamycin. Interestingly, the sensitivity of Arabidopsis seedlings to 272 

the rapamycin structurally related compound FK506 (that binds FKBP12 but not TOR), was tested in 273 

WT and yeast-FKBP12OX lines (Zhang et al., 2013). The authors concluded that FK506 has no effect 274 

on seedlings growth but the seedling phenotype shown after 25 days on half strength Murashige and 275 

Skoog (MS) medium containing 20 µM FK506 appears to us different from the control. Indeed, roots 276 

hardly grew in the solid medium but grew in the air outside the solid matrix, a feature already observed 277 

after 9 days on non-optimal full strength 1xMS medium (Ren et al., 2012). This altered growth is 278 

characteristic of a stress due to non-optimal or to toxic drug containing medium and might reveal 279 

potential TOR-rapamycin-independent phenotypes. Thus, we think that more detailed analysis is 280 

required before ruling out that FK506 affects or not the physiology of yeast-FKBP12OX lines.  281 

Additionally, Arabidopsis FKBP12 was shown to interact with a nuclear protein that controls 282 

endoreduplication and therefore might control this process as in mammals (Vespa et al., 2004). As in 283 

the case of calcineurin, HsFKBP12 is also a subunit of the transforming growth factor B (TGF-284 

β) type Ι receptor, a transmembrane Ser/Thr kinase that regulates cell growth and differentiation (Gold 285 

et al., 1997). HsFKBP12-/- cells show cell cycle arrest due to impaired regulation of TGF-β receptor 286 

signaling (Aghdasi et al., 2001). Thus, it appears relevant to wonder whether in the absence of 287 

rapamycin AtFKBP12 is involved in cell cycle regulation or other signaling regulations that might 288 

interfere with TOR signaling studies with FKBP12OX lines. Indeed, expressing an heterologous 289 

FKBP12 gene might also change plant physiology as the PaFKBP12 gene from the Antarctic moss 290 

Polytrichastrum alpinum ectopically expressed in Arabidopsis increases plant stress tolerance (Alavilli 291 

et al., 2018). Thus, even though FKBP12OX lines do not have a macroscopic phenotype (Deng et al., 292 

2016; Sormani et al., 2007), it does not preclude conditional cell/tissue responses compared to WT. 293 

Not least, when regarding the other component of the duo FKBP-Rapamycin, a concentration range of 294 

0.5-5 µM rapamycin was shown to interfere with interactions of the core particle 20S with its cellular 295 
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activators and consequently to inhibit proteasome by attenuating major peptidase activities (Osmulski 296 

and Gaczynska, 2013). The authors hypothesized that interactions of the proteasome with rapamycin 297 

induce a maximal conformation shift of the proteasome, which results in compromised gating of 298 

substrates. Such an off target of rapamycin might interfere with other functions independently of the 299 

effects of TOR inhibition. Whether proteasome is an off target of rapamycin also in plants is unknown 300 

but should be carefully considered as proteolysis is enhanced following TOR inhibition (Zhao et al., 301 

2015) and UPS and autophagy converge in Arabidopsis (Marshall et al., 2015). At last, another hint is 302 

the putative role of metabolites interacting with TOR such as phosphatidic acid that might impede 303 

interaction rapamycin-TOR and explain the strong variation of rapamycin dose to inhibit TOR in 304 

different mammalian cell lines (Mukhopadhyay et al., 2016). Anyhow, altogether this underscores that 305 

FKBP12 and/or rapamycin dosage as well as the cell physiology might be carefully controlled as they 306 

influence TOR inhibition-dependent results. This also opens the question of the selectivity of 307 

rapamycin. Therefore, compared to yeast and mammals, the conditional FKBP12 overexpression-308 

dependent allosteric inhibition of TOR by rapamycin in plants might easily turn to be a conundrum.  309 

Another aspect to underline is that for each combination of FKBP12OX lines, the dose response 310 

to rapamycin shows that growth cannot be completely inhibited. Seedlings growth of yeast-FKBP12OX 311 

lines was partially inhibited by 1-20 µM rapamycin (Deng et al., 2016; Ren et al., 2012) or by even 312 

lower range of 10-100 nM (Zhang et al., 2013). Anyhow, routine rapamycin concentration ranges are 313 

4-10 µM to inhibit such lines (Leiber et al., 2010; Sormani et al., 2007; Xiong and Sheen, 2012), 314 

which makes it hard to appreciate rapamycin potency in plants. However, growth inhibition of yeast-315 

FKBP12 OX plants by rapamycin never exceeds a plateau value of ca. 50% (Fig. 1C), which reminds 316 

the incomplete efficacy of rapamycin action observed in mammals (Fig. 1A and C). Similarly, in the 317 

green algae C. reinhardtii, which is naturally sensitive to rapamycin (Supplementary Fig.S1) in both 318 

solid and liquid media, maximal growth inhibition was also ca. 50% (Fig. 1E) (Crespo et al., 2005; 319 

Juppner et al., 2018; Roustan and Weckwerth, 2018). Therefore, in both yeast-FKBP12OX plant lines 320 
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and rapamycin-sensitive WT algae challenged till now, full growth inhibition cannot be reached with 321 

rapamycin (Fig. 1C and D), making rapamycin efficacy not maximal. With that in mind, we can 322 

conclude that rapamycin can be used with more confidence in Chlamydomonas reinhardtii than in 323 

plants and other algae as, even if TOR inhibition is probably partial, transgenic over-expression of 324 

FKBP12s is avoided. 325 

 326 

Inhibition of TOR by ATP competitive inhibitors: a new deal 327 

 Within this highly dynamic research field, studies of TOR kinase have considerably 328 

increased over the last 10 years and limitations of allosteric rapamycin- and rapalogs-based clinical 329 

strategies have pushed toward the development of orthosteric ATP-competitive mTOR inhibitors that 330 

were called asTORis (active site TOR inhibitors), TORKis or TKIs (TOR Kinase Inhibitor) (Martelli 331 

et al., 2018). In contrast to rapamycin, they target the kinase domain of mTOR and are able to fully 332 

inhibit mammalian TORC1 activity in a dose dependent manner but also TORC2 and other TOR 333 

complexes (Fig. 1A and B) (Chresta et al., 2012; Dowling et al., 2010b; Harwood et al., 2018; Kang 334 

et al., 2013).  335 

Here we would like to remind that the terms of potency, efficacy, selectivity, metabolic 336 

stability, off rate (also called associated residence time), and off targets as well as pharmacokinetic 337 

characteristics of a drug at the organism level (PK), altogether define a drug singularity. Potency and 338 

efficacy are parameters that are derived from graded dose-effect curves and that can be used to 339 

compare drugs that elicit the same pharmacological effect (Mosby's Medical Dictionary, 2009). 340 

Potency, which is a measure of the sensitivity of a target organ or tissue to a drug, is a relative term 341 

that relates the amount of one drug required to produce a desired level of effect to the amount of a 342 

different drug required to produce the same effect. On the semi-logarithmic graded dose-effect plot, 343 

the curve of the most potent agent tends to be in the left side of the graph and the median effective 344 
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concentration (EC50) is lower. A drug's potency is influenced by its affinity for its receptor and 345 

therefore independent of its maximal effect. Efficacy (or intrinsic activity) is the drug property that 346 

allows the receptor-bound drug to produce its pharmacological effect. The relative efficacy of two 347 

drugs that elicit the same effect can be measured by comparing the maximum effects of the drugs. A 348 

drug can have high potency but poor efficacy, meaning that the response is seen at very low doses and 349 

remains small even at high doses. This is the case of rapamycin which is a highly potent but poorly 350 

efficient TOR allosteric inhibitor (Fig. 1A, C and E) compared to active site TOR inhibitors which are 351 

highly efficient (Fig. 1B, D and F). If a drug has one effect, and only one effect on all biological 352 

systems it possesses the property of specificity. In experience, the vast majority of drugs are selective 353 

rather than specific (Davis et al., 2011). “A drug with the appropriate balance of avoidance of 354 

undesirable targets (narrow selectivity) and coverage of one or more targets of interest (broad 355 

selectivity) is a continual drug development challenge. In many cases this objective is attained through 356 

trial and error, but there are rational approaches that can guide the tuning of selectivity, and examples 357 

have been published that illustrate a number of generalizable strategy” (Huggins et al., 2012). Thus, “a 358 

Selectivity score (S) for each drug can be calculated by dividing the number of kinases found to bind 359 

with dissociation constant <3 μM” (or sometimes 10 µM) “by the total number of distinct kinases 360 

tested. The selectivity score is an unbiased measure that enables quantitative comparisons between 361 

compounds and the detailed differentiation and analysis of interaction patterns” (Karaman et al., 362 

2008).  363 

At last, in pharmacology, an inhibiting or effective concentration (IC or EC) refers to a 364 

concentration of a drug that produces a biological response in case of enzymology in vitro assays or 365 

when unicellular organisms or mammalian cell cultures are tested. IC refers to an assay where there is 366 

decrease in activity whereas EC rather refers to a drug that activates a system. The term effective dose 367 

(ED) refers to in vivo studies when used in living organisms such as animals to usually determine the 368 

median effective dose (ED50) and/or the median lethal dose (LD50). Usually, in the context of studies 369 
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involving asTORis, potency values obtained by means of in vitro enzyme-based assays (ICin vitro) are 370 

generally different than potency values (ICcell) obtained by cell-based assays treating cells before 371 

measuring various enzymatic products (also called cell potency values) because many targets can be 372 

modified at more than one phosphorylation site or in more than one way, e.g., ubiquitylation or 373 

acetylation (Carlson et al., 2009). Dissecting biochemical effects using in vitro grown cell lines might 374 

also give rise to different EC values depending on the cell physiology/line and is a far much different 375 

task than looking for clinical outcomes. Indeed the efficient doses (ED) are usually higher than those 376 

of in vitro studies likely to encompass drawbacks linked to PK properties, metabolic stability and 377 

putative off targets effect in organisms. A tool such as KInhibition portal 378 

(https://kinhibition.fredhutch.org) might help choosing a set of selective drugs among thousands 379 

depending on the objective (Bello and Gujral, 2018). Thus, designing a scale of inhibitor “strength” of 380 

a set of inhibitors solely from enzymatic properties (in vitro IC50) to calibrate experiments with living 381 

cells or organisms might be hazardous (Michel and Seifert, 2015).  382 

Chemical structure activity relationship through docking studies using the TOR kinase domain 383 

with the dual PI3K/PIKK inhibitor NVP-BEZ235 (BEZ235), the TOR selective inhibitor PP242, and 384 

the TOR specific inhibitor KU-0063794 showed that drugs in development utilize a novel 385 

pharmacophore space to achieve specificity of TOR inhibition (Sturgill and Hall, 2009). So around the 386 

year 2009, several compounds were reported as asTORis (Fig. 2): PP242 (Feldman et al., 2009), 387 

Torin1 (Liu et al., 2010; Thoreen et al., 2009), KU-0063794 (Garcia-Martinez et al., 2009), WYE-354, 388 

600 and 687 (Yu et al., 2009) and others reviewed by Benjamin and colleagues (Benjamin et al., 389 

2011). These compounds were generally developed from dual PI3K/PIKK inhibitors or inhibitors more 390 

largely involved in the PI3K/AKT axis and have different core structure (Andrs et al., 2015; Garcia-391 

Echeverria, 2011; Liu et al., 2012a). They were TOR selective, having IC50 for TOR lower than for 392 

PI3Ks and also for other PIKKs (Benjamin et al., 2011). For instance, Torin1 efficiency towards TOR 393 

was compared to the effect of the dual PI3K/PIKK inhibitors PI103 and BEZ235 and its high 394 
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selectivity towards a panel of kinases including PI3Ks and PIKKs was shown. Torin1 has a quinolone 395 

core structure expected to share the same binding mode as BEZ235 with mTOR, PI3K and other PIKK 396 

family members while PP242 has a pyrazolopyrimidine core structure derived from PP2 (Feldman et 397 

al., 2009). KU-0063794 and WYE-354 also derive from other dual PI3K/PKK inhibitors such as PI-398 

103 and LY294002 and contain a morpholino-substituted heterocycle. These asTORis were reported 399 

more efficient than rapamycin by measuring their capacity to phosphorylate TOR targets and also 400 

inhibit cell proliferation more efficiently. So new TORC1-dependent functions and previously found 401 

rapamycin resistant were deciphered due to higher efficacy of asTORis (Feldman et al., 2009; Thoreen 402 

and Sabatini, 2009) leading to new advances in TOR pathway knowledge (Guertin and Sabatini, 403 

2009). For instance, the more effective TOR inhibition unveiled rapamycin resistant levels of 404 

regulation in cap-dependent initiation of translation, protein synthesis and proliferation (Dowling et 405 

al., 2010b). This also helped show that mTOR activates cap-dependent translation of cyclins and 406 

represses cap-independent translation of p27/KIP1, an inhibitor of CDK (Cyclin Dependent Kinase), 407 

therefore activating cell proliferation (Thoreen et al., 2009). These differential effects of rapamycin on 408 

substrates phosphorylation compared to that of the ATP competitive inhibitor Torin1 were studied 409 

through designing peptides from well-known TORC1 targets containing phosphorylation sites (Kang 410 

et al., 2013). When Torin1 blocks the phosphorylation of all TORC1 dependent phosphorylated sites 411 

in all TOR protein targets, some are not dephosphorylated by rapamycin (called strong target) and 412 

some are (called poor target).  This concept of substrate quality is a property of TOR effector sites, 413 

which can explain that their differential phosphorylation vary with growth conditions. Furthermore, 414 

poor and strong targets can be found in the same protein (Fig. 3). In parallel, strong targets were also 415 

found phosphorylated in cells growing under partially depleted nutrient conditions (Fig. 3). Hence, 416 

rapamycin can be highly potent and selective for some poor mTOR targets such as S6K T389 and 4E-417 

BP1 S65, but its intrinsic activity or efficacy cannot be maximal since TOR is still able to 418 

phosphorylate the strong mTORC1 targets such as 4E-BP1 T37/46 and ULK1 S758 in presence of 419 
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rapamycin (Kang et al., 2013). Therefore, due to the incomplete intrinsic efficacy, rapamycin-420 

dependent TOR inhibition by an acute dose might lead to error-prone interpretation of data especially 421 

when targets are not well identified and/or when a chronic dose of rapamycin is applied (Sarbassov et 422 

al., 2006). 423 

A comparison of selectivity, potency and metabolic stability of four asTORis mentioned above 424 

carrying different structure, i.e., Torin1, PP242, WYE-354 and KU-0063794 (Fig. 2) was reported and 425 

it appears to us to be a good example of how selectivity of a drug to TOR is demonstrated through 426 

tests involving many different assays (Liu et al., 2012a). They all exhibited highly potent and similar 427 

IC50 values against the recombinant mTOR kinase domain but their relative cellular potency EC50 428 

against the TORC1 complex was: Torin1 > KU-63794 > WYE-354 > PP242. Their relative selectivity 429 

score toward a panel of 442 kinases was: KU-0063794 > WYE-354 > Torin1 > PP242. Other kinase 430 

assays showed that Torin1 concentration above 1 µM was able to inhibit the other PIKKs: ATM, ATR 431 

and DNA-PK. The metabolic stability was also better with KU-0063794 and WYE-354 than with 432 

Torin1 and PP242. However, Torin1 had a slower off-rate as the duration of S6K1 (pS6K-Thr-389) 433 

and PI3K-dependent (p-AKT-Thr-308) phosphorylation last 16 hours vs 1 hour for the 3 other drugs 434 

after extensive washing out the drug. Altogether, authors’ conclusion of the study of these four 435 

asTORis was to avoid PP242 and to cautiously interpret data when Torin1, KU-0063794 and WYE354 436 

are used at concentrations above 1 µM. Proliferation assays on mouse embryonic fibroblasts (MEFs) 437 

showed that in the range of 10-500 nM, rapamycin induces a plateau value of ca. 50-60% inhibition 438 

without any dose dependence, whereas Torin1 induces 40% to 100 % inhibition between 10 and 250 439 

nM when IC50 kinase values were 1-10 nM (Thoreen et al., 2009). Hence, Table 1 shows that IC50 440 

values for in vitro TOR kinase activity do not fully predict the IC50 of proliferation. These differences 441 

likely deal with intrinsic PK, metabolic stability of the drug, or posttranslational modifications of the 442 

target as well as drug efflux or inactivation by cells as in yeast (Liu et al., 2012b).  443 

Improvement of the pharmacokinetic properties of KU-0063794 led to the development of 444 
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AZD-8055, which is very highly selective for mTOR over PI3Ks and PIKKs (Chresta et al., 2012; 445 

Garcia-Echeverria, 2011; Marshall et al., 2011) and more recently to the less selective but more stable 446 

sister compound AZD2014 (Pike et al., 2013) (Fig. 2), both used in clinical trials (Garcia-Echeverria, 447 

2011). A continuous development of intermediate compounds of this series that showed very high 448 

specificity towards PI3Ks although lower potency towards TOR led to the design of AZD3147, a new 449 

highly selective inhibitor of TORC1 and TORC2 (Pike et al., 2015) that can circumvent the 450 

discontinuity of clinical trials (Martelli et al., 2018). Similarly, other derived compounds were 451 

developed in parallel like WYE-125132 (WYE-132) or Torin2 (Liu et al., 2013; Yu et al., 2010). 452 

WYE-132 has better pharmacokinetics properties than WYE-354 and is highly selective for mTOR 453 

over PI3K and the PIKK ATR (Yu et al., 2010). Torin2 has improved pharmacological and solubility 454 

properties compared to its structural analogue Torin1 but also significant activity against mTOR, 455 

ATM, ATR, and DNA-PK, as well as both in vitro and in vivo antitumor efficacy, being therefore a 456 

potent broadly active pan-PIKK kinase inhibitor (Liu et al., 2013). Indeed, if Torin2 most potently 457 

inhibits mTORC1 and mTORC2 in vivo at concentrations of less than 10 nM, it also inhibits ATR, 458 

ATM, and DNA-PK at concentrations between 20 and 100 nM and PI3K at concentrations above 200 459 

nM. This is in contrast with Torin1 which only exhibits moderate inhibition of DNA-PK (250 nM) but 460 

is inactive against other PIKK-family kinases. Unexpectedly, Torin2 also has a lower residence time 461 

than Torin1 (4h vs 16h) leading to suggest that Torins might induce a TOR conformation change in the 462 

kinase that is energetically difficult to recover from rather than different binding affinities. This adds a 463 

specific feature to Torins that distinguish them from other asTORis, showing that Torin1 and Torin2 464 

although structurally close cannot only be compared in terms of potency. Moreover, the intentional 465 

development of new dual Torin2 analogs that inhibit both mTOR and ATR (Shaik et al., 2018) for 466 

clinical purposes shows that driving drug selectivity to specificity is a difficult chemistry task. 467 

Therefore, the crosstalk between TOR pathway and other pathways such as the DNA damage response 468 

(Li et al., 2012; Silvera et al., 2017) involving other PIKK close to TOR might hamper the discovery 469 
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of true TOR targets with Torin2 and Torin2 analogs. In addition, Torin2 was reported as an 470 

antimalarial agent 1,000-fold selective to malaria parasites over mammalian cells whereas TOR 471 

homolog is not found in Plasmodium falciparum (Hanson et al., 2013). Therefore, Torin2 is 472 

particularly known to target other eukaryotic proteins than TOR and should be used with caution for 473 

biological studies. 474 

Nowadays, the use of more than one selective and potent inhibitor through targeting for 475 

instance two pathways or sub-pathways is more and more explored in medicine rather than using dual 476 

PI3K/mTOR inhibitors of a single pathway, which can have the “possible drawback of association 477 

with greater toxicity” (Simioni et al., 2014). Furthermore, novel compounds are continuously searched 478 

to circumvent the discontinuity of potent and selective compounds yet cytostatic or unstable in clinical 479 

trials (Andrs et al., 2015; Chen et al., 2012; Estrada et al., 2013; Fraser et al., 2016; Mortensen et al., 480 

2015; Nowak et al., 2009; Park et al., 2014; Pei et al., 2012; Slotkin et al., 2015; Walters and Cox, 481 

2018; Zheng and Jiang, 2015). Thus, although selectivity is not always the major criteria in clinical 482 

trials, it is an essential criteria for the choice of an inhibitor to elucidate the role of a particular kinase 483 

in biological tissues and in vitro studies (Arrowsmith et al., 2015). This illustrates why potency and 484 

efficacy of selective inhibitors should be carefully examined and that the concept of inhibitor strength 485 

can be misleading according to experts (Michel and Seifert, 2015). This also underlines that 486 

testing/using more than one TOR ATP competitive inhibitor should help identifying and confirming 487 

TOR-dependent regulated functions. 488 

 489 

ATP-competitive TOR inhibitors in plant and algae 490 

The first asTORis that have been used in plants were among those presented above, i.e., KU-0063794, 491 

AZD-8055, Torin1 and Torin2, WYE-354 and WYE-132. It was remarkable that KU-0063794 and 492 

WYE-354 and their improved derived molecules, AZD-8055 and WYE-132, followed the same 493 

relative potency than in mammalian cells, i.e., AZD-8055 > KU-0063794 and WYE-132 > WYE354 494 
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(Table 1) (Montane and Menand, 2013). We encountered solubility problems with Torin1 in our 495 

culture conditions, and among the drugs we could get and test at that time; AZD-8055 (Fig. 1D) and 496 

WYE-132 quickly became our favorites to fully inhibit Arabidopsis WT seedlings growth because of 497 

high reproducibility of responses and of temporal stability of dose-dependent inhibition. Furthermore, 498 

we demonstrated that the plant growth inhibition by AZD-8055 and WYE-132 is TOR-dependent by 499 

showing induced haploinsufficiency to TOR as the TOR/tor heterozygote mutants are hypersensitive to 500 

both inhibitors compared to WT (Fig. 1D) (Montane and Menand, 2013). Maximal efficacy was 501 

shown through dose-response curves showing complete inhibition of root growth, as opposed to 502 

rapamycin in plants or algae (Fig. 1C-F). asTORis were potent in most photosynthetic eukaryotes as 503 

they strongly inhibit growth of a large variety of plants (Arabidopsis, potato, tomato, rice; Lotus, 504 

millet, Nicotiana), and proliferation in both green algae and diatoms (C. reinhardtii, P. tricornutum) 505 

(Deng et al., 2017; Dong et al., 2015; Dong et al., 2018; Imamura et al., 2016; Montane and Menand, 506 

2013; Prioretti et al., 2017; Song et al., 2017). Table 1 and Fig. 2 show the concentration range of the 507 

main asTORis used to inhibit proliferation, to study TOR functions and that helped find new TOR 508 

targets in photosynthetic eukaryotes: KU-0063794, AZD-8055, Torin1 and Torin2 (Deng et al., 2017; 509 

Dong et al., 2015; Kravchenko et al., 2015; Li et al., 2015; Li et al., 2017; Mohammed et al., 2018; 510 

Montane and Menand, 2013; Mubeen et al., 2018; Ouibrahim et al., 2015; Pfeiffer et al., 2016; 511 

Prioretti et al., 2017; Schepetilnikov et al., 2013; Schepetilnikov et al., 2011; Schepetilnikov et al., 512 

2017; Wang et al., 2018b; Werth et al., 2018). Some authors tried to establish a scale of “strength” of 513 

these inhibitors in plants starting from values of IC50 kinase in vitro (Deng et al., 2016; Xiong et al., 514 

2017a). Here, as we have discussed above, we would like to stress that knowledge from the 515 

biochemical and animal fields should be taken in consideration when using such inhibitors. Indeed, as 516 

shown above for KU-0063794, Torin1 and AZD-8055 (Table 1), using the IC50 of in vitro kinase to 517 

predict IC50 of proliferation hardly works in mammals and plants. This might hide other 518 

characteristics of a drug in vivo as well as its speciation in culture medium. As reported above, the 519 
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potency of Torin1 in animal cells was higher than that of KU-0063794 but the selectivity was the 520 

opposite. Regarding the use of Torins and in particular Torin2 as an asTORi, we have mentioned 521 

above that it was described as a pan-PIKK family inhibitor as it exhibited potent biochemical and 522 

cellular activity against PIKKs, including ATM and ATR (Liu et al., 2013). Indeed, mammalian 523 

mTOR is involved in the network of responses between DNA damage and cell cycle control, including 524 

the activity of the ATM/ATR-CHK1/CHK2-p53 axis (Silvera et al., 2017). Since ATM and ATR are 525 

conserved in plants and algae and regarding the known role of Arabidopsis ATM in regulation of 526 

meristem activity and DNA-damage responses (Fulcher and Sablowski, 2009; Hisanaga et al., 2013; 527 

Ricaud et al., 2007), care should be taken when analyzing data with Torin2 in plants, especially when 528 

high concentrations are used as mentioned above. For our part, we therefore avoid using Torins in 529 

order to selectively inhibit the TOR pathway and checked that selective ATP competitive ATM 530 

inhibitors did not inhibit growth and so could be used as a selectivity control toward TOR inhibitors 531 

(Montane and Menand, 2013). The specificity of a cellular response towards TOR inhibition can also 532 

be confirmed in plant and algae through comparing the effect of different selective asTORis such as 533 

AZD-8055 and WYE-132 (Barrada et al., 2019; Prioretti et al., 2017) (Prioretti et al., 2017)but it has 534 

to be done at doses leading to similar growth inhibition. Furthermore, we should keep in mind that we 535 

should not expect identical molecular and cellular effects of rapamycin and asTORis in plants and 536 

algae as rapamycin does not inhibit all TORC1 activity, and might also not inhibit other potential new 537 

plant/algae TOR complexes (see above). Taking into account the conservation of the minimal core 538 

TORC1 in plants, and the specificity of plant targets that only start to emerge, we think that other plant 539 

TOR target sites than the sole S6K T449 will need to be developed to accurately record the level of 540 

plant TOR inhibition. Indeed, the mammalian S6K1 T389 equivalent of plant S6K T449 corresponds 541 

to a poor TOR target (Kang et al., 2013). 542 

 543 
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Pharmacogenetic screens in plant and algae 544 

Selective active site inhibitors have several advantages to other methods of kinase inhibition 545 

for genetic screens. First, they allow avoiding possible drawbacks associated with transgenic lines. 546 

Second, they allow to control the time of and the level of inhibition on a given organism, organ, tissue 547 

or cell by following the kinetics of any measurable parameter and its dose-dependent evolution, an 548 

important aspect in case of essential genes like TOR. Inhibiting TOR from a known WT physiological 549 

context is definitely different than comparing loss of function or overexpressing functions. 550 

Furthermore, being cytostatic also in plants (Montane and Menand, 2013), these inhibitors offer the 551 

possibility to rescue hypersensitive plants and to more accurately follow reciprocal changes or point 552 

out any differential behavior of targets when inhibition is relaxed. To date, few screens of mutants 553 

resistant or hypersensitive to TOR inhibitors have been reported in plants and algae yet they revealed 554 

important aspect of TOR signaling (Barrada et al., 2019; Couso et al., 2016; Crespo et al., 2005; Li et 555 

al., 2015). Recently, the vip1-1 C. reinhardtii mutant hypersensitive to the first saturating 556 

concentration of 500 nM rapamycin inhibiting growth to the 50% plateau value was isolated (Couso et 557 

al., 2016). This mutant which was also hypersensitive to the single concentration tested of 500 nM 558 

AZD-8055 or Torin1 revealed an interaction between TOR and inositol polyphosphate intracellular 559 

signaling. In Arabidopsis, a first screen of mutants that show no chlorosis of cotyledons induced by 2 560 

µM AZD-8055 allowed to select 9 mutants among which a new ABI4 (ABA-INSENSITIVE 4) allele, 561 

revealing a new role of TOR in abscisic acid (ABA) signaling (Li et al., 2015). Interestingly, in our 562 

culture conditions we never observed AZD-8055-induced chlorosis at doses up to 10 μM (Montane 563 

and Menand, 2013), meaning that growth conditions have to be considered consistently with the role 564 

of TOR in response to nutrients and stress. We recently screened EMS Arabidopsis mutants resistant 565 

to a concentration of 1µM AZD-8055 inhibiting 90% of root lengthening and discovered that the 566 

homolog of yeast YAK1 (Yet Another Kinase 1) and human DYRK1A (Dual Specificity Tyrosine 567 

Phosphorylation Regulated Kinase 1A) was a TOR-inhibition dependent downstream repressor of 568 
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plant cell proliferation (Barrada et al., 2019). We also showed that pINDY, an-ATP competitive 569 

inhibitor of DYRK1A, mimics Arabidopsis yak1 loss-of-function mutations. This offers a new way to 570 

study TOR-YAK1 axis in plants. In addition, we isolated other mutants sensitive or resistant to AZD-571 

8055 concentrations leading to other levels of growth inhibition which are now under study. Hence, 572 

together with studies of known mutants of components of the plant/algae TORC1 pathway, new 573 

screening approaches might actively help deciphering TOR pathways in photosynthetic organisms. 574 

In addition to being proof-of-concept that the pharmacogenetic screens can help identify new 575 

functions of TOR in plant and algae, these studies remind the importance to carefully design the 576 

conditions of the screen but also of further studies. For instance, the haploinsufficiency phenotype of 577 

TOR/tor heterozygotes discussed above is a nice illustration of the importance of the “right” dose of an 578 

inhibitor to compare physiological context of two genetic backgrounds (Montane and Menand, 2013). 579 

The TOR/tor heterozygotes were clearly hypersensitive to AZD-8055 concentrations between 0.1 and 580 

1 µM, but grow the same as the WT at doses below 0.03 µM and above the maximal inhibitory 581 

concentrations of 3µM, that almost completely inhibit root growth (Fig. 1 D). For instance, to compare 582 

YAK1- and TOR- expression patterns by GUS staining in roots which growth was similarly inhibited 583 

by AZD-8055, we used twice lower AZD-8055 concentration for the GUS knock-in TOR/tor-1 584 

heterozygous line (Menand et al., 2002) than for a pYAK1::YAK1-GUS homozygous line (Barrada et 585 

al., 2019). Therefore, the dose-dependent effect of asTORis on the processes analyzed should be 586 

preliminary determined prior to design specific genetic screen. We would like to finish this section 587 

with guidelines that might help plan experiments with TOR inhibitors in plants and algae, with an 588 

emphasis on pharmacogenetic screening. 589 

Guidelines for plant physiology studies and genetic screens with asTORis : 590 

- Clarify the question you want to answer to choose the best developmental or growth stage of the 591 

plant or algae to study or to screen, 592 
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- carefully define growing conditions as growth can be widely influenced and disturbed by even 593 

subtle changes, 594 

- choose selective drug(s) which has(ve) been best characterized, consider any possible drawback,  595 

- check the vehicle drug harmlessness on cell growth and keep its concentration constant whatever 596 

the drug concentration used; usually DMSO 0.1% works well in mammalian cells, plants and algae 597 

(Montane and Menand, 2013; Prioretti et al., 2017; Thoreen et al., 2009), 598 

- choose clear-cut parameter (s) to quantify effect of the drug, 599 

- establish a dose-response curve in a log10 way from ca. pM including concentrations active in other 600 

species (see text and Table1), 601 

- check stability of  inhibition over time, 602 

- check the reversibility of the drug effect if the drug is cytostatic (asTORis), 603 

- confirm selectivity of the effect with other asTORis, 604 

- choose a concentration related to the question you ask within the dose-response range, to avoid off 605 

target at too high doses, 606 

- after selection of a mutant of interest, check its dose-response curve. 607 

If you think you have discovered a direct target of TOR: 608 

- check the drug-dependent effect on different organs or tissues to avoid bulk response that can mask 609 

discrete tissue responses,  610 

- design peptide(s) encompassing the putative phosphorylation site(s) to demonstrate which one is 611 

TOR-dependent, 612 

- express the WT and mutated form (s) in phosphorylated amino acid of the new target in a knock-613 

out mutant and compare dose response curves. 614 

 615 

Conclusion 616 
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If rapamycin has opened the study of TOR functions in plant and algae as in yeast and mammals, it 617 

should be used cautiously in plants for which overexpression of FKBP12 is required. The use of 618 

rapamycin has fewer drawbacks in some algae, like Chlamydomonas reinhardtii, which is naturally 619 

sensitive to rapamycin. However, its good potency masks incomplete efficacy in many if not all 620 

species studied till now. The requirement of FKBP12 partner to inhibit TOR with rapamycin might 621 

also disturb signaling responses due to the cellular role of FKBP12 and putative off targets of 622 

rapamycin itself might also interfere. However, in any case, we should keep in mind that rapamycin 623 

does not inhibit all TORC1 activity and does not inhibit other TOR complexes potentially present in 624 

plants and algae. Conversely, ATP-competitive TOR inhibitors more efficiently inhibit proliferation 625 

and growth than rapamycin in algae and plants, as in animals, and are therefore very good tools to 626 

study the TOR pathway in photosynthetic eukaryotes. However, we should in return take care of 627 

information’s about concentration range and singularity from chemical and animal researchers who 628 

developed and experienced them. Their use has already helped decipher TOR pathway effectors in 629 

plants and algae and we guess they will certainly be of great help in the future. 630 
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Tables 1020 

Table 1. Concentrations of rapamycin and different asTORis inhibiting TOR kinase activity 1021 

(IC50), mammalian cells proliferation (IC50), WT plant root and leaf growth, and WT green 1022 

alga and diatom proliferation. Values were obtained with different in vitro kinase assays as well as 1023 

different proliferation assays described in the references. Cell lines are embryonic or cancerous. Range 1024 

of values was from different mammalian cell lines in the same article. Concentration unit is nM. Note 1025 

that rapamycin never fully inhibits non-cancerous mammalian cell proliferation, growth of roots and 1026 

leaves of A. thaliana seedlings or of the unicellular green alga C. reinhardtii.  1027 

Inhibitor / 
original 
paper on 
mammalian 
cells 

IC50 or 
EC50 in 
vitro 
TOR 
kinase  

IC50 
mammalian 
cell 
proliferation 
(MEFsa / 
cancerous 
cellsb) 

IC50  
A. thaliana 
root 
lengthening 
c/d 

Estimated 
doses for A. 
thaliana leaf 
size reduction e 

 

Estimated 
IC50  
C. reinhardtii 
f  
 
 

IC50 
P. tricornutum g 

Rapamycin   10- 500 / 
<1– 20,000 

No effect up 
to 10,000 c/d, 
impaired 
solubility 
beyond that c 

nd 
Couple of 
doses 100-500  

Single dose, 
slight effect at 
10,000 

PP242 

(Feldman et 
al., 2009) 

8 1000 nd 
nd 

nd nd 

Torin1 

(Thoreen et 
al., 2009) 

1-10 10-250 >1,000 
impaired 
solubility 
beyond that 

nd 

 

No dose 
response, used 
at 500 

nd 

KU-0063794  

(Garcia-
Martinez et 
al., 2009) 

10 1,200 5 - 6,000 
nd 

nd nd 

WYE-354  

(Yu et al., 
2009) 

5 200 - 2,000 2,000 
nd 

nd nd 

Torin2  

(Liu et al., 
2013) 

0.25-10 13 - 200 500 nd nd nd 
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AZD-8055  

(Chresta et 
al., 2012) 

2.5 50 500 20μl of 7,500 
to 30,000 nM 
per 1 cm-wide 
leaf and shoot 
apex  

No dose 
response, 
routinely used 
at 500 

4000-6000 

WYE-
125132 
(WYE-132) 

(Yu et al., 
2010) 

0.19 24-145 200 
nd 

nd < 5,000 

a (Thoreen et al., 2009); b (Guertin and Sabatini, 2007; Huang et al., 2003; Mukhopadhyay et al., 1028 

2016); c (Montane and Menand, 2013); d (Ren et al., 2012), note that growth IC50 of lines 1029 

overexpressing yeast FKBP12 is observed with ca. 500-1,000 nM rapamycin, e Leaves of 3 weeks old 1030 

plants grown on soil and under long days (16h) were rubbed with drops of AZD-8055 and grown for 6 1031 

days before scoring growth inhibition (Ouibrahim et al., 2015). f (Crespo et al., 2005; Juppner et al., 1032 

2018; Roustan and Weckwerth, 2018); g (Prioretti et al., 2017). 1033 
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 1035 
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 1037 

 1038 

 1039 

Figures legends 1040 

Figure 1: Efficacy of rapamycin and the asTORi AZD-8055 on growth and proliferation of 1041 

mammalian cells, plants and algae. Dose response curves of rapamycin (A, C, E) and of AZD-8055 1042 

(B, D, F) on mouse cancerous cells (A-B), Arabidopsis root growth (C-D) and C. reinhardtii growth 1043 

(E-F). Note that mouse embryonic fibroblasts (non-cancerous) are also partially inhibited by 1044 

rapamycin but completely by Torin1 (Thoreen et al., 2009). Plant dose response to rapamycin is 1045 

shown for Wild Type (WT) and plant overexpressing A. thaliana (At)-, Human (Hs)-, or yeast (BP12)- 1046 

FKBP12 (C). For A. thaliana, dose response with AZD-8055 is shown for the WT and the TOR/tor-1 1047 



37 

 

heterozygote, which has higher sensitivity to this asTORi due to haploinsufficiency of TOR. In all 1048 

species, the efficacy of growth inhibition by rapamycin is never maximal (ca. 50%) while it is 1049 

maximal by AZD-8055. From (Giubellino et al., 2013) (A, B), (Deng et al., 2016) (C), (Montane and 1050 

Menand, 2013) (D), (Juppner et al., 2018) (E) and (Imamura et al., 2016) (F). Figures and images are 1051 

reproduced with permission of Oxford Academic (A, B), Wiley Online Library (E) and Taylor & 1052 

Francis (F) or were originally published under the Creative Commons Attribution License (C, D). 1053 

 1054 

 1055 

Figure 2: Formula of main asTORis discussed in this review. 1056 

For original publication of each inhibitor, see text and Table 1. Drawing was done with the 1057 

ACD/ChemSketch freeware. 1058 

 1059 

Figure 3: The quality of mTORC1 substrates determines their sensitivity to rapamyin, asTORis 1060 

and nutrients availability. Poor mTORC1 substrates like S6K1 T389, 4EBP1 S65 and also GRB10 1061 

S476 are inhibited by rapamycin and partial amino acid depletion. In the other hand, strong mTORC1 1062 

targets, including ULK1 S758, 4E-BP1-T37/46, but also GRB10 S150 and PRAS40 S183, are resistant 1063 

to rapamycin but not to asTORis or complete starvation. From data of (Kang et al., 2013). 1064 
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