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Abstract 

 

Models for ultrasonic guided wave NDT are developed at CEA LIST and integrated into 

the CIVA platform. Models already available in CIVA 10 deal with plates and 

cylindrical guides, possibly multilayered. Mode computation, radiated field from 

different type of transducers (contact with or without wedge, surrounding or surrounded 

arrays in pipes) and response of a NDT examination in pulse-echo or pitch-catch 

configurations for a crack orthogonal to the guide axis are proposed. These models are 

now extended to deal with guides of arbitrary section with planar extrusion, modes 

being computed with the Semi-Analytical Finite Element (SAFE) method. A hybrid 

SAFE-Finite Element method has also been integrated to compute the response of a 

flaw of arbitrary shape, a weld or a complex junction. These new models as well as their 

validations are presented and discussed. 

 

1.  Introduction 
 

Simulation tools for guided wave inspection are being developed at CEA LIST. These 

tools aim at designing and optimising NDT methods or probes, or interpreting 

experimental data. The developed models are based on a modal decomposition. In 

practice, the knowledge of mode behaviour and dispersion characteristics is an essential 

step for understanding complex phenomena arising in a guide. Measured or simulated 

signals are then interpreted in reference to modes. Typical questions concern the ability 

of modes to be transmitted through or reflected on a guide discontinuity, to be converted 

into other modes in the interaction. Simulations are thus performed in the frequency 

domain and are subsequently synthesized by Fourier transform over a limited spectrum. 

 

At a given frequency, the elastodynamic field (particle displacement or velocity, stress) 

can be decomposed as a linear combination of eigenmodes computed in the cross-

section of the structure whose guiding axis is taken as . The  mode of this set is 

described at a given frequency by: i) its wavenumber , real for the finite number of 
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propagative modes, imaginary for the finite number of evanescent modes or includes an 

imaginary part for the infinite number of inhomogeneous modes, ii) the corresponding 

particle displacement vector  in the invariant cross-section of the waveguide,  

denotes the position in the cross section. The displacement  at any position 

 in the waveguide at the pulsation  is expressed by: 

 

 
where  denotes the  amplitude coefficient in the decomposition. 

 

A given mode may be transmitted through or reflected on a guide discontinuity or 

partially converted into other modes in the interaction. The modal description is used in 

the regular parts of the waveguide, whereas models for transduction or scattering by 

guide discontinuities or flaws are used locally. To compute modal solutions, the semi-

analytical finite element method has been implemented (1). This method allows the 

computation of both wavenumbers , and modal displacements . It can deal 

with waveguides of arbitrary section and anisotropic materials. 

 

The computation of modal amplitudes emitted by a transducer may be performed under 

the assumption that piezo-transducers can be modelled as sources of normal or 

tangential stresses over their active surface. For a transducer acting from the guiding 

surface, a Green function for a given mode is derived and a surface integration over the 

transducer performed (2). 

 

The scattering problem is written in the form of a matrix of complex coefficients  

and , assuming that modal solutions in guiding structures connected to the local 

zone of scattering are known.  (resp. ) is the reflection (resp. transmission) 

coefficient for the incident  mode and the reflected (resp. transmitted)  mode. 

They stand for the scattering by an inhomogeneity of the guide. This matrix links an 

input vector constituted by the modal coefficients of the incoming wave, to output 

vectors constituted by those of the outgoing waves. For planar crack-like defects of 

arbitrary shape in an otherwise homogeneous guide, assuming that crack surface 

belongs to the guide cross-section, a mode matching method can be performed to 

compute the scattering matrix (3). 

 

2.  Simulations based on hybrid SAFE-FE method  
 

2.1 Theory 

 

To deal with arbitrary flaw shapes, guide inhomogeneities or junctions between several 

guides, a finite element (FE) scheme has been developed with the further goal to limit 

the computation zone to a minimal size for efficiency (4). The computation relies on the 

use of artificial boundary conditions endowing transparency. Radiation conditions at 

infinity are brought back to the artificial boundaries by building an operator coupling 

the finite elements inside the FE zone to modal solutions in guides. An original mixed 

formulation has been derived whose unknowns are the displacement field in the 

bounded domain and the normal component of the normal stresses on the artificial 
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boundaries. The scattered field is then projected on modal solutions in guides through 

the use of bi-orthogonality relations. This method has been established for 2D and 3D 

waveguides in Cartesians coordinates. It can deal with the scattering by a junction made 

up of an arbitrary number of waveguide (5). In the next release of CIVA GW software, 

only the 2D (dealing with the scattering of Lamb wave) and axisymmetric version are 

implemented.  

The main steps of the hybrid method are recalled, in particular the building of 

transparent boundaries conditions by using the bi-orthogonality relation of Fraser 

expressed in terms of the so-called mixed vectors X and Y, first introduced by Pagneux 

and Maurel(6). This relation is the key point of the method since it allows projecting the 

scattering field on the modal decomposition. A complex junction  between N 

waveguides is represented on Figure 1. A bounded domain  connected to an arbitrary 

number N of different waveguides on its boundaries  is considered. 

 

 
Figure 1. A complex scattering junction  connected to N uniform waveguides. 

 

The aim of the coupling method is to build modal transparent boundary conditions on 

the interfaces  of the computational domain  for the diffracted waves. 

Let’s consider an incident right-going mode n0 on the interface  at : 

 

 
 

The diffracted displacement field  can be expressed by a 

sum over the outgoing waves using the modal decomposition in each uniform 

waveguide k: 

 

 
where  denotes the sign (+ or -) of propagation for the diffracted waves, the 

magnitude of the  outgoing mode, the local transverse coordinates, the local 

axial coordinate and  the local axial position of the boundary  , for each uniform 

waveguide . 

 

 is composed by the transverse component of the normal stress and the axial 

component of the displacement field, whereas  (the dual of ) is composed of the 

transverse component of the displacement field and the opposite of the axial component 

of the normal stress:  
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                                                    ,   

 

Fraser’s relation expressed in term of  and  corresponds to an orthogonality relation 

between two modes n and m that propagate in the same direction:  

 

                                       , 

 

where (.)S denotes the integration over the cross-section of the waveguide and nm is the 

Kronecker symbol. 

 

The mixed variables  and  for the diffracted field can be similarly expanded thanks to 

the modal decomposition: 

 

 
Using the bi-orthogonality relation, the amplitude  of the  mode can be 

recovered as follow: 

 
 

Introducing the expression of  in the previous modal expansion, one expresses 

two coupling operators  and  (similar to DtN, for Dirichlet-to-Neumann) 

mapping the trace of  to the trace of on each boundary  or vice-versa: 

 

 
 

Now using one of these so-called boundary maps, it is possible to formulate the 

diffraction problem in the bounded domain  where the transparent boundary 

conditions on the section  will be expressed by the means of the chosen coupling 

operator  or . They correspond to an outgoing wave condition for the 

computational domain . This condition represents a modal transparent boundary 

condition for guided waves. 

 

The diffraction problem is then formulated by a variational formulation where the 

unknown is the total displacement field . To express the boundary terms on the 

section  corresponding to the work of the external stresses on the boundaries , the 

part of the coupling operator related to the stresses components (  for  or  

for ) is introduced. The corresponding missing stress component (  for  or 

 for ) as a Lagrange’s multiplier is subsequently introduced. This leads to a 

mixed variational formulation where unknowns correspond to the total displacement 

field and the  Lagrange’s multipliers. Moreover, as we have introduced k Lagrange’s 

multipliers, we need k more equations to complete the variational system, which is done 
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by expressing a weak variational formulation of the remaining equations issued from the 

coupling operator (  for  or  for ). More precisely this corresponds to 

the compatibility between the corresponding displacement component (axial or 

transverse ) given by the finite element representation and its modal representation 

(on the artificial boundaries). 

Scattering coefficients can finally be expressed in term of reflection and transmission 

coefficient: 

 

                                      

                                      

 

2.2 Simulation of the interaction of Lamb wave with a complex junction 

 

A first example is proposed to illustrate the capabilities of the hybrid SAFE-FE method. 

The junction of six steel plates is shown on figure 2. A wedge transducer is positioned 

on a 50mm thick branch and radiates Lamb wave through the junction. A similar 

transducer acts as a receiver on the other side of the junction 700 mm from the emitter. 

The emitter is driven by a narrow band excitation composed of 20 cycles modulated by 

a Hanning window at 110 kH. The angle of both wedge transducers is set arbitrarily at 

31°.The mesh used for the FE computation, as well as the distribution of energy among 

the different existing modes in the excitation branch are also shown on Figure 2. 

 Figure 2. Inspection of a complex junction connecting six uniform waveguides (top 

left). FE meshing of the junction (bottom left). Distribution (percentage) of incident 
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energy in the left branch among symmetric and antisymmetric modes around the 

transducer centre frequency (right). 

Snapshots of the displacement wavefield inside the FE box are represented on Figure 3. 

A comparison between received signals obtained in presence of the complex junction 

and in the case of a simple plate of 50mm thickness shows that the junction induces a 

loss of 13 dB (Figure 4). 

 

 
Figure 3. Snapshots of displacement wavefield inside the junction at t=350µs (a), 

t=385µs (b), t=420µs (c), t=455µs (d), t=490µs (e) and t=525µs (f). 

 

 
Figure 4. Simulated waveform measured on the receiver in a uniform plate (left) and 

after crossing the junction (right) 
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2.3 Simulation of the interaction of Lamb wave with corrosion-pitting 

 

In this section, the interaction of Lamb modes with corrosion pitting in a 2mm thick 

aluminium plate is simulated. Material properties used are =2700kg/m3., Lame’s 

coefficient =0.2662x1011 Pa and =0.5597x1011 Pa. A similar study has been 

performed by Terrien et al. (7) to detect the presence of corrosion in aircraft structures. 

The basic idea is to use Lamb modes at relatively high frequency to detect early 

corroded areas. Indeed, at high frequencies, Lamb modes are more sensitive to 

corrosion microstructure than to thickness variations, which may allow corrosion to be 

discriminated from plate thinning. Corrosion pits are modelled by a distribution of 

cracks of 100 µm depth and width (Figure 5). Two identical wedge transducers are 

positioned on each side of the corroded area, 200 mm from each other. The emitter is 

driven by a narrow band excitation composed of 20 cycles modulated by a Hanning 

window at 2 MHz. As the angle of the wedge transducers are adjusted to match the 

phase velocity of the S0 mode at 2MHz, only the fundamental symmetric mode S0 is 

incident on the corrosion area and the receiving probe detects essentially the same 

mode. This is confirmed by the simulation of the distribution of energy carried by the 

five existing modes in the transducer frequency bandwidth (S0, S1, S2, A0 and A2) 

shown on Figure 6. 

 

 
Figure 5. Inspection of a 2-mm thick corroded aluminium plate. In this pitch-catch 

configuration, corrosion pits are modelled with a distribution of 100µm square 

notches. The distance between emitter and receiver is 200mm. 

 

Simulations of inspections have been performed with a length of corroded area ranging 

from 2mm to 10mm, its depth being set to 100µm. The amplitude of the received signal, 

as shown on Figure 7, decreases with the length of the corroded area. These results are 

in accordance with Terrien et al. (7). Indeed, the presence of a corroded area induces a 

conversion from S0 mode to A0 mode, as shown on Figure 7. This conversion is found 

to be proportional to the length of the corroded area. The receiver being only sensitive 

to S0 mode, this explains the decrease of the received signal with the length of the 

corroded area. 
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Figure 6. Distribution (percentage) of energy among existing modes in the emitting 

wedge transducer frequency bandwidth. At 2Mhz, around 90% of the energy is 

carried by the S0 mode. 

 

 
Figure 7. Simulated waveform on the receiver for a healthy 2mm thick plate (a) 

and a plate with a corroded area of 2mm length (b), 5mm length (c), 10mm length 

(d). Distribution of transmitted energy towards the receiver (percentage) among 

existing modes for a healthy plate (e) and a plate with a corroded area of 2mm 

length (f), 5mm length (g), 10mm length (h). 
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The interaction of Lamb wave with a thickness variation has also been investigated. For 

a 10 mm long and 100µm deep plate thinning corresponding to the same thickness as 

corrosion pittings considered previously, the received signal (Figure 8a) is very close to 

the one obtained for a healthy plate (Figure 7a). Indeed, nearly no mode conversion 

occurs in this case (Figure 8c). This allows a 10 mm long corroded area (Figure 8b and 

8d) to be discriminated from a plate thinning of similar extent. 

 
Figure 8. Simulated waform on the receiver and distribution of transmitted energy 

towards the receiver after diffraction by a 100µm deep and 10 mm long plate 

thining (a and c) or 100µm deep and 10mm long corroded area (b and d) 

 

 

3.  Mode and field computation in guides of arbitrary section 
 

3.1 Theory 

 

The semi-analytical finite element method (SAFE) (1) allows the computation of both 

wave vectors and modal displacements in the section as being the eigenvalues and 

eigenvectors (resp.) of a quadratic system of equations. This system is the discrete form 

of a variational problem in the guide section. Since it is based on a finite element 

discretisation of the section, it allows one to deal with all sorts of guide characteristics 

(shape, constitutive materials). Specifically, multilayered structures, anisotropy and 

viscoelasticity can be easily accounted for. We have implemented this method to deal 

with various guiding structures. Guide section is meshed either by 1D linear element for 

plates, cylinders or tubes, or 6- noded triangular finite elements in the general case of 

arbitrary section. As the mesh is restricted to the section, the method is computationally 

very efficient 
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3.2 Simulation of mode and field computation in a rail 

 

The wavefield emitted by a piezo transducer in a steel rail structure has been computed 

with the SAFE method (see configuration on Figure 9). The emitter is driven by a 

narrow band excitation composed of 10 cycles modulated by a Hanning window at 40 

kHz. 

Phase and group velocities dispersion curves up to 100 kHz are shown on Figure 10 as 

well as displacement and stress for arbitrary mode and frequency.  

 
Figure 9. Inspection configuration of a rail and FE mesh used for the SAFE 

computation. Rail dimensions are 150 mm width and 172 mm height. The 

computation is positioned 1m from the piezo emitter 

 

 
Figure 10. Computation of guided modes in a rail. Phase velocity (g) and group 

velocity (h) dispersion curves. Displacement components (a,b,c) and stress 

components (d,e,f) in the section at an arbitrary location on the dispersion curves. 
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The maximum of displacement in the computation zone corresponding to a cross-

section located 1m away from the emitter is shown on Figure 11 as well as time 

waveforms simulated near the centre of the rail. 

 

 
Figure 11. Maximum of displacement along X (a), Y (b) and Z (c) in the 

computation zone defined on Figure 9. Simulated waveforms near the centre of the 

rail, corresponding to the displacement along X (d), Y(e) and Z (f). 

 

 

5.  Conclusions 
 

Models for GW / NDT simulation have been described. A specific FE method has been 

derived for computing the scattering by arbitrary flaw shapes, guide inhomogeneities or 

junctions between several guides. It includes exact transparent artificial boundaries for 

minimizing the size of the FE zone, thus reducing computation costs. A 2D version for 

plates and an axisymmetric version for pipes has been implemented in CIVA. The 

SAFE method has also been implemented to deal with guided propagation in uniform 

guides of arbitrary section. In addition, the simulation of pipe inspection can now 

handle the presence of inner fluid and an algorithm for the computation of amplitude 

and delay laws for phased array in pipes is now proposed in CIVA. 
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