

Surface properties of hydrogenated nanodiamonds: a chemical investigation

Hugues Girard, Tristan Petit, S. Perruchas, T. Gacoin, Céline Gesset, Jean-Charles Arnault, Philippe Bergonzo

► To cite this version:

Hugues Girard, Tristan Petit, S. Perruchas, T. Gacoin, Céline Gesset, et al.. Surface properties of hydrogenated nanodiamonds: a chemical investigation. Physical Chemistry Chemical Physics, 2011, 13 (24), pp.11517-11523. 10.1039/c1cp20424f. cea-01807359

HAL Id: cea-01807359 https://cea.hal.science/cea-01807359

Submitted on 25 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Cite this: DOI: 10.1039/c1cp20424f

PAPER

Surface properties of hydrogenated nanodiamonds: a chemical investigation[†]

10

1

5

H. A. Girard,*^{*a*} T. Petit,^{*a*} S. Perruchas,^{*b*} T. Gacoin,^{*b*} C. Gesset,^{*a*} J. C. Arnault^{*a*} and P. Bergonzo^{*a*}

Received 17th February 2011, Accepted 8th April 2011 15 DOI: 10.1039/c1cp20424f

Hydrogen terminations (C–H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene

²⁰ moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that

²⁵ C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development.

30 Introduction

Diamond nanoparticles or nanodiamonds (NDs) containing nitrogen-vacancy (N-V) coloured centres hold great promises for biomedical applications.¹ They combine some of the out-

35 standing properties of bulk diamond, such as its chemical resilience and its carbon surface chemistry, further to the benefits of hosting a photoluminescent centre emitting in the far-red with a remarkable photostability.² While their mass production is now well controlled³⁻⁵ and their low cytotoxicity 40 reported,⁶⁻⁸ NDs appear as very promising biolabels for both

⁴⁰ reported, ⁶ NDs appear as very promising biolabels to diagnostic and therapeutic applications.⁹

The use of NDs to label biomolecules or to deliver bioactive molecules implies however that specific chemical functionality can be granted to the bare NDs. Their stability in biological

- 45 media, their role to target or to release drug, go through a suitable surface functionalization of the particles with, for instance, PEG chains, proteins or ionic moieties.⁹⁻¹³ However, after post-synthesis purification treatments and irradiation/ annealing to create N-V centres, ND surface chemistry
- 50 remains highly inhomogeneous. Amorphous carbon, graphite shells and various oxidized terminations, from ether to acid groups, are amenable to cover the diamond particles.¹⁴ Direct functionalization on such NDs leads to an inhomogeneous

^b CNRS-Ecole Polytechnique, Laboratoire de Physique de la Matière Condensée, 91128 Palaiseau, France

† Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cp20424f

and uncontrolled surface chemistry. Intense research efforts 30 are thus dedicated to the surface homogenization of the particles, since the functionalization efficiency strongly depends on the initial NDs surface terminations. Chemical treatments can be used to either promote the formation of COOH¹¹ or C–OH groups,¹⁵ known as starting points towards 35 amidation, esterification or silanization grafting routes. Such wet chemistry treatments are efficient but may lead to a contamination of the NDs by chemical reagents or reaction sub-products, and thus require numerous washing steps, often considered as time and effort consuming. Annealings under 40 controlled atmosphere such as fluorine, argon, oxygen, or in vacuo are other ways to homogenize the ND surface chemistry and to create new surface terminations.^{16,17} However, high temperatures can easily lead to the degradation of the diamond surface and the formation of amorphous and sp^2 45 carbon on NDs.18

In this context, we have developed an alternative route, based on hydrogen plasma treatment in a microwave (MW) cavity.¹⁹ Atomic hydrogen created under MW chemical vapour deposition (MWCVD) conditions is able to reduce 50 oxygenated terminations into hydrogenated ones with high efficiency and, at the same time, to prevent from the formation of sp² and amorphous carbon species. This dry treatment leads to fully hydrogenated NDs (H-NDs) ready to be used, without any further chemical purification steps. This leads to large 55 quantities of H-NDs with almost full hydrogenated surface termination to be produced, as confirmed by various characterization techniques (FTIR, XPS, Raman), all revealing the spectroscopic signatures of hydrogenated diamond layers.

10

15

20

^{55 &}lt;sup>a</sup> CEA, LIST, Diamond Sensors Laboratory, 91191 Gif sur Yvette, France. E-mail: hugues.girard@cea.fr

- Herein, we report investigations addressing the study of the chemical reactivity of these H-NDs exposed to three different surface modifications: selective oxidation under UV exposure, as well as two grafting routes with alkenes and diazonium
- 5 moieties. These reactions are common on hydrogenated diamond films towards efficient biological functionalizations (DNA, proteins grafting)^{20–22} so their use on NDs may also lead to promising developments. However, the chemical mechanisms involved in these grafting routes require specific
- 10 surface properties, involving charge transfer, which is only provided to the diamond surface by C-H hydrogen terminations.²³ Therefore, this article aims at evaluating if this specific reactivity also exists on H-NDs by studying their reactivity towards those three "standard" chemical reactions.
- 15 In this way, experiments performed on as-received NDs and H-NDs will be compared.

Experimental

²⁰ Materials and chemicals

High Pressure High Temperature (HPHT) NDs (mean diameter: 50 nm) were purchased from Van Moppes (Syndia[®] SYP 0-0.05). Acetonitrile (Riedel-De Haën), pentane (VWR),

25 4-nitrophenyldiazonium tetrafluoroborate (Aldrich) and undecylenic acid (Aldrich) were used as received.

Hydrogenation

- The experimental procedure used for the hydrogenation has been previously reported in details.¹⁹ Briefly, 100 mg of NDs were deposited in a quartz cartridge and introduced in a sealed quartz tube. Hydrogen was injected at pressures up to 10 mbar and plasma was generated in the quartz tube with a microwave power of 300 W. Homogenization of the NDs in the hydrogen
- ³⁵ plasma was optimized by a rotation of the types in the hydrogen plasma was optimized by a rotation of the quartz tube. NDs were exposed to hydrogen plasma for 20 minutes leading to H-NDs.

40 UV hydroxylation

After hydrogenation, H-NDs are kept in their quartz cartridge and exposed to a H_2O vapour saturated atmosphere. The cartridge is then illuminated using a 254 nm UV lamp for 6 hours. NDs are mixed by rotating the quartz pipe.

45 UV alkene grafting

20 mg of H-NDs were reacted with 5 mL of pure degassed undecylenic acid under 254 nm UV lamp for 12 h. After reaction, NDs were washed by 7 successive centrifugation and redispersion cycles in acetic acid, acetone and water prior to the drying of the solid residue under primary vacuum.

Diazonium grafting

20 mg of H-NDs were reacted with 60 mg $(2.5 \times 10^{-4} \text{ mol})$ of 5 4-nitrophenyldiazonium tetrafluoroborate in 25 mL of acetonitrile for 12 h under nitrogen with vigorous stirring. After reaction, NDs were washed by 5 successive centrifugation and redispersion cycles in acetonitrile and then the solid residue was dried under primary vacuum. 10

Characterizations

XPS analyses were performed using an Omicron XPS spectrometer equipped with an Al K α monochromatized anode ($h\nu = 1486.6 \text{ eV}$). The binding energy scale was calibrated ¹⁵ *versus* the Au 4f_{7/2} peak located at 84.0 eV.²⁴ Curve fitting was performed to extract the components in the C1s spectra, using a fixed Gaussian/Lorentzian ratio of 30%. Peak areas were determined following the Shirley's inelastic background subtraction method.²⁵ Atomic ratios were calculated from ²⁰ the integrated intensities of core levels after photoionization cross-section corrections.²⁶

FT-IR spectra were measured in a transmission mode using a Thermo Nicolet 8700 spectrometer. KBr pellets were prepared with as-received NDs, H-NDs (immediately after hydrogenation) and functionalized NDs. Measurements of H-NDs and hydroxylated NDs were performed in a homemade IR vacuum cell connected to a primary vacuum system (10^{-3} mTorr) and equipped with KBr windows and a heater (400 K). For as-received and reacted NDs, IR measurements were performed under nitrogen flow. 30

Zeta potential (ZP) measurements were recorded in solution at controlled pH on a Malvern ZetaSizer Nano. All experiments were performed with the manufacturer calibration procedures.

Results

The first reaction conducted on H-NDs was UV hydroxylation. Immediately after hydrogen plasma exposure of HPHT NDs, the quartz pipe was filled up with air and water vapours and then exposed to UV irradiation for 6 hours (Fig. 1a). FTIR spectroscopy of the NDs was used to investigate the chemical modifications induced by this UV treatment. To overcome peaks related to adsorbed water on the spectra,²⁷ 45 treated samples (hydrogenated and hydroxylated) were dried in an *in situ* IR reactor cell for one night prior to the measurement as well as during acquisition.²⁸ FTIR spectra are reported in Fig. 2. As-received and H-NDs spectra are also 50

Fig. 1 Schemes of the reactions conducted to functionalize H-NDs.

35

1

55

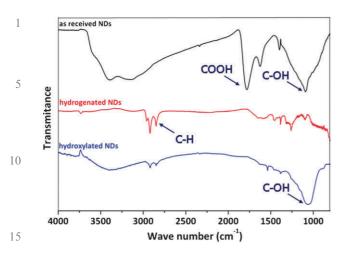
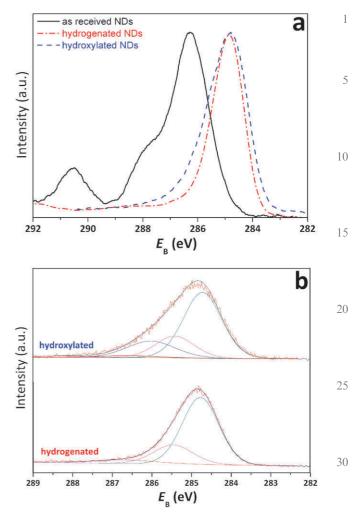


Fig. 2 FTIR spectra of as-received, hydrogenated and hydroxylated NDs.


- 20 reported for comparison. Hydrogenation is mainly evidenced by the loss of the IR bands at 3300 cm⁻¹, 1770 cm⁻¹ and 1050 cm⁻¹, relative to O–H, C=O (in COOH groups) and C–OH terminations, respectively, with the exaltation of the C–H stretching bands.²⁹ After UV treatment, a re-oxidation of
- 25 the surface occurs, revealed by the re-appearance of C–OH and OH relative bands at 1050 and 3300 cm⁻¹, respectively. Drying treatment prior and during the IR acquisition ensures that these signals are not related to H₂O adsorption. It should be noted that this oxidation method does not lead to the 30 formation of acid groups at the surface, since no acid-related
- bands (between 1700 and 1800 cm⁻¹) are observed.

XPS analyses were carried out on the hydroxylated NDs. C1s core level spectra of as received, hydrogenated and hydroxylated NDs are reported in Fig. 3a. As previously

- 35 described,¹⁹ the hydrogenation treatment induces a shift towards lower binding energies, to values close to those probed on hydrogenated undoped layers³⁰ and a decrease of the C1s FWHM (from 2 to 1.4 eV), which is attributed to the loss of the carbon–oxygen related components and the formation of
- 40 hydrogenated terminations. After hydroxylation, a broadening of the C1s peak occurs. To gain better insights to these modifications, the deconvolution of the hydrogenated and hydroxylated C1s core level spectra was performed (Fig. 3b). Hydrogenated NDs exhibit two main contributions, at
- 45 284.8 and 285.5 eV, attributed to C–C sp³ and CH_{*x*,($x \ge 2$)} bonds respectively.³¹ At higher binding energies (286.7 eV), a very weak contribution can be assigned to oxygenated terminations.

This contribution is in agreement with the 3 at.% of oxygen measured at the sample surface, mostly due to spontaneous

- 50 reoxidation of the hydrogenated particles during the transfer into the UHV chamber. After hydroxylation, the two main contributions, at 284.8 and 285.5 eV, attributed to C–C sp³ and CH_{x,(x ≥ 2)} bonds, respectively, are still observed, but a new component located at 286.1 eV arises on the C1s
- 55 spectrum, for 13% of the C1s total area. As reported in the literature, peaks located at this binding energy range are associated with carbon–oxygen single bonded functionalities, such as ether or hydroxyl groups. In a detailed study on diamond oxygenated terminations,³² authors have shown that

Fig. 3 (a) XPS C1s core levels of as received, hydrogenated and hydroxylated NDs and (b) C1s fits of hydrogenated and hydroxylated 35 NDs.

the components located at +1.2 eV and 1.9 eV from the C-Csp3 peak are, respectively, related to C-OH and C-O-C groups. Here, considering the energy shift (+1.3 eV) and the 40 FTIR data, this new component can be mainly attributed to hydroxyl groups.^{33,34} It should be noted that a very weak component located at higher binding energies (286.9 eV) is still present, and is likely to be due to ether bridges. These results are in agreement with the concomitant oxygen increase, from 45 below 3 to 11 at.% after the hydroxylation treatment. From these results, a surface density of the hydroxyl groups created on the NDs can be estimated at values close to 1 function nm^{-2} . However, considering the high roughness of the sample induced by the sample preparation (drop casting), 50 this result has to be considered only as a rough estimation and be handled with precaution.

Finally, Zeta potentials at neutral pH were measured on as received and hydroxylated NDs dispersed in water. An inversion of the Zeta potential occurs with values of -45 mV for as 55 received NDs and +30 mV for the hydroxylated ones. This E_{ZETA} switching will be further discussed below.

The second chemical modification performed on H-NDs is also a photochemically induced process. Immediately after

- 1 hydrogenation, NDs were reacted with pure undecylenic acid, under 254 nm UV irradiation (Fig. 1b). This alkene was chosen for its long alkyl chain and its acid group, both functionalities easily identifiable by FTIR analysis with char-
- 5 acteristic structures at 2800 cm^{-1} and 1700 cm^{-1} respectively (Fig. 4a). Furthermore, the vinyl function is evidenced by a peak located around 900 cm⁻¹. For comparison, the same reaction was also conducted on as-received NDs.
- Fig. 4a shows the FTIR spectra of H-NDs after reaction 10 with undecylenic acid under UV exposure. It appears clearly that both characteristics of the undecylenic acid structures, at 1700 cm^{-1} and 2800 cm^{-1} , are present on the spectrum after reaction with noticeable intensities. Furthermore, the band related to the vinyl function visible at 900 cm^{-1} on the
- 15 undecylenic acid spectrum is missing on the reacted H-NDs, confirming the grafting of the moiety by the formation of a stable C-C single bond. Furthermore, if the same experiment is performed without UV exposure, the grafting is strongly hindered, as shown by the FTIR spectrum of Fig. 4a.
- Fig. 4b shows the FTIR spectra of as-received NDs under 20 similar conditions. Around 1700-1800 cm⁻¹, a modification of the broad band related to the acid groups of the as-received NDs is observed, suggesting the appearance of a new component

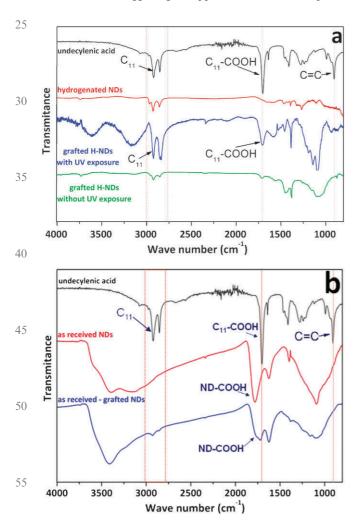


Fig. 4 FTIR spectra of reacted (a) H-NDs and (b) as received NDs with undecylenic acid.

which may be related to the undecylenic acid COOH groups. 1 However, at 2800 cm⁻¹, only a very weak structure is visible. Therefore, despite the modification of the 1700-1800 cm⁻¹ range, grafting of the undecylenic acid on as-received NDs 5 appears as strongly inhibited compared to hydrogenated NDs. Indeed, this evolution of the NDs COOH related band could also be attributed to a modification of the pre-existing oxidized termination of the as-received NDs during the grafting procedure. For instance, an effect of the successive centrifugations can be suggested, as a size-dependent C=O stretching 10 frequency has been revealed on NDs.35

Finally, the third chemical reaction carried out on H-NDs is based on an electroless diazonium grafting, already investigated in a previous study.¹⁹ In this reaction, the reduction of the diazonium group will not be supported by electro-15 chemistry, the charge exchange being based on chemical reactions occurring at the interface.³⁶ As-received as well as H-NDs were exposed in same conditions to a nitrobenzene diazonium salt (Fig. 1c). This diazonium salt was chosen for its nitro group, easily identifiable by FTIR through the ONO 20 stretching bands visible at 1344 and 1520 cm⁻¹. FTIR spectra of the diazonium salt precursor and of reacted NDs are reported in Fig. 5a and b. In addition to the ONO bands, the diazonium salt exhibits a characteristic peak at 2270 cm^{-1} related to the diazonium N_2^{+} . On reacted as-received NDs 25 (Fig. 5a), no contribution of the ONO stretching bands is noticeable on the FTIR spectrum. On reacted H-NDs (Fig. 5b), the two ONO related bands at 1344 and 1520 $\rm cm^{-1}$ are clearly visible, while no contribution at 2270 cm^{-1} related to the N_2^+ is evidenced. The coupling occurred between the 30 nitrobenzene moiety and the H-NDs, with the reduction of the N_2^+ into N_2 , as expected for an aryldiazonium reaction in these conditions.³⁶ As no reaction occurred with as-received NDs, a spontaneous selective bonding only on H-NDs is revealed. XPS analyses were performed onto reacted samples. 35 Only carbon, nitrogen and oxygen contributions were revealed. C1s core level of reacted NDs is displayed in Fig. 6. The comparison with C1s core level of freshly hydrogenated NDs (Fig. 3b) shows the presence of a new component located at 283.7 eV, i.e. at lower binding energies than the C-C 40 sp³ peak of the diamond core. According to the literature, this peak can be attributed to the C–C sp² conjugated bounds of Q2 the phenyl groups.³⁷ It should be noted that this component represents 3% of the C1s core level. At higher binding energies, between 285.5 and 288 eV, slight modifications also 45 occur, attributed to the C-N bounds and re-oxidation of the NDs surface. However, in this range, a strong overlap between C-O and C-N components prevents an accurate deconvolution. Finally, N1s core level (inset Fig. 6) shows the characteristic NO2 component located at 406 eV. A weaker contribution is also visible at 400 eV, which can be attributed to azo groups (-N=N-).38 Azo linkages during diazonium coupling have already been reported several times in the literature, but their formation mechanism is still under debate. One can suggest an azo coupling reaction between the 55 diazonium cation and an electron-rich aromatic ring.³⁹ The presence of these azo linkages suggests that a growth of nitrophenyl multilayers is not excluded in our case. Calculations on core level areas reveal a nitrogen atomic

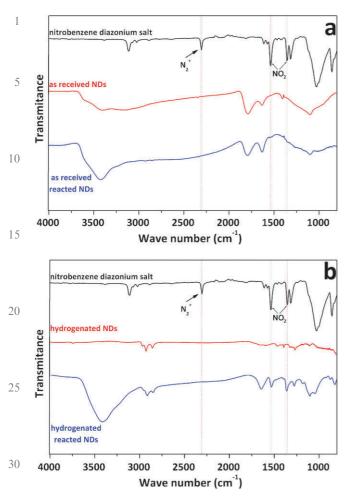
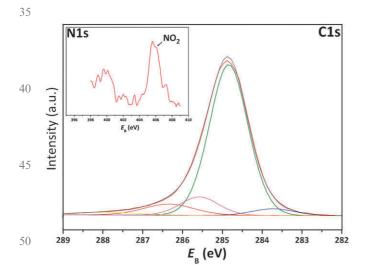



Fig. 5 FTIR spectra of reacted (a) as received and (b) H-NDs with diazonium salt.

Fig. 6 XPS C1s and N1s (inset) core levels of hydrogenated NDs reacted with nitrobenzene diazonium salt.

55

concentration of 3.3% after grafting. Considering the approximations previously described, this ratio allows us to estimate a grafting density between 0.5 and 1 function nm^{-2} , which is in the same range as reported for hydrogenated diamond layers.³⁷

This journal is © the Owner Societies 2011

Discussion

Among the several oxidation procedures of diamond, such as electrochemical,⁴⁰ plasma⁴¹ or thermal⁴² methods, UV oxidation of a hydrogenated diamond surface in the presence 5 of O₂ and H₂O appears as the most selective oxidation route.⁴³ Formation of OH radicals introduces a hydroxyl group as surface terminations on diamond to the exclusion of other oxygenated terminations. Other groups have reported on diamond layers successfully hydroxylated by this method, 10 allowing further functionalization by the silanization method.⁴⁴ On H-NDs, this oxidation procedure gives rise to a hydroxylation of the surface, confirmed by the FTIR bands at 1050 and 3300 cm^{-1} and the new component located at 286.1 eV on the XPS C1s core level (Fig. 3b). Note that after 15 hydroxylation of a hydrogenated diamond thin film, a similar modification of the C1s peak was reported by Szunerits and Boukherroub.³³ Selectivity of this oxidation procedure seems also to be preserved on H-NDs as no carboxyl or carbonyl groups were evidenced by XPS or FTIR. However, inversion 20 of the Zeta potential sign is more difficult to explain. Obviously, the initial negative value at neutral pH is linked to the dissociation of the carboxylic acids present on our as-received NDs ($pK_a < 5$ if we consider aliphatic carboxylic acids). After hydroxylation treatment, both XPS and FTIR 25 analyses confirmed that no carboxylic acids remain on the surface and only revealed the formation of C-OH groups with an apparently good selectivity. At the same time, a positive Zeta potential was measured. Two distinctive studies in the literature report of a similar phenomenon. Ozawa et al. 30 reported on a positive Zeta potential switching after hydroxylation of carboxylated NDs by a reduction with borane. They confirmed the presence of hydroxyl groups on their NDs by FTIR measurements and further silanization coupling.⁴⁵ In this paper, authors do not give any explanation for this charge 35 switching, but their particles were not submitted to a hydrogenation pre-treatment. This last point excludes in our case an effect of remaining C-H terminations on the charge switching. Williams et al.46 reported on a positive Zeta value switching of NDs after an annealing at 500 °C in hydrogen gas. They 40 showed by FTIR analysis a desorption of carboxylic functionalities and formation of CH, CH₂ and CH₃ groups. They also noticed that a reduced concentration of oxygen-containing groups like ether, alcohol and ketones remained on their particles. In this study, authors refute that protonation of 45 these oxygen-containing groups can occur at neutral pH in water. They suggest an explanation based on Electron-Donor-Acceptor (EDA) complexes which can interact with oxonium ions in water (H_3O^+) . However, such complexes require sp^2 bonding on the particles, which was not revealed 50 by the XPS analysis performed on our particles. Therefore, at this stage, a link between the positive Zeta potential value and the hydroxylation cannot be strictly established, but further experiments are under progress. Anyway, H-NDs show the same reactivity and selectivity towards the UV oxidation 55 process than hydrogenated diamond layers. These results point out the homogeneity and the quality of the hydrogenated terminations created by MPCVD on the NDs, comparable to hydrogenated diamond layers. Furthermore,

Phys. Chem. Chem. Phys., 2011, 111, 1-7 | 5

- this experiment demonstrates that hydroxylation of NDs can be easily conducted by this selective method, avoiding the risk of contamination of the NDs with a chemical reduction. The comparison between the reactivity of the hydrogenated
- 5 and the as-received NDs towards diazonium and alkene coupling undoubtedly reveals a higher efficiency of these grafting routes for H-NDs. On diamond layers, numerous studies report that C–H strongly enhances both chemical reactions,²³ leading to the formation of covalent C–C bonds
- 10 between the diamond surface and the grafted moiety. Indeed, hydrogenated terminations confer to the diamond layers specific electronic surface properties, such as a superficial conductive layer⁴⁷ (SCL) and a negative electron affinity^{48,49} (NEA). The latter is usually highlighted to explain the
- 15 reactivity of hydrogenated diamond layers towards alkenes, by the mean of photo-excited electrons allowed to propagate out of the diamond into the nearby liquid phase, even with sub-bandgap excitation.⁵⁰ If the mechanisms of this chemical reaction between the hydrogenated diamond layer and the
- 20 alkene moiety are still not clearly established, authors agree that hydrogen terminations are required for this reaction, and that electron transfer arises from sp³ surfaces and not from grain boundaries and/or sp² species at the interface. Oxygenated terminations inhibit the reaction, as the electron
- 25 affinity of the material turns from negative to positive.⁵¹ Transferred onto H-NDs, the same phenomenon seems to occur, with the same selectivity of the reaction towards the nature of the surface terminations. For as-received NDs, covered with oxygenated terminations (see the FTIR spectrum
- 30 of Fig. 2), the reaction between the alkene and the ND surface is inhibited. On the other hand, when hydrogenated, the reaction clearly leads to a successful functionalization of the ND surface. Finally, if H-NDs are not submitted to a UV exposure during the grafting, the reaction is also strongly
- 35 inhibited. This confirms that the reaction is promoted by photons. All these results point out a similar behaviour between hydrogenated diamond layers and nanoparticles, suggesting a negative electron affinity on 50 nm H-NDs.
- In the same way, the spontaneous grafting of a diazonium 40 salt on a diamond surface also arises from specific electronic properties conferred by C–H terminations.³⁷ The covalent bonding goes through the creation of a phenyl radical by the mean of an electron transfer from the diamond surface to the aryldiazonium salt.³⁷ In this case, the electron transfer is due
- 45 to the presence of a superficial conductive layer, a p-type layer. The commonly accepted mechanism, so-called *transfer doping*,⁴⁷ describes a hole accumulation layer due to an electron transfer from the valence band and a redox couple adsorbed on the surface when the diamond is exposed to wet atmosphere or
- 50 immersed in an electrolyte. This phenomenon is only possible on hydrogenated layers which exhibit a low ionization potential, matching with the chemical potentials of the adsorbates. On oxygenated layers, exhibiting higher ionization potential, this surface conductivity and the related electron
- 55 transfer vanishes.⁵¹ As for alkene grafting, a comparison between diamond layers and nanoparticles reactivity towards diazonium moieties can now be established. In our experiments, spontaneous grafting of the diazonium moiety only occurs on H-NDs, with a high grafting density. As-received

NDs, carrying mostly oxygenated terminations, exhibit a very 1 poor reactivity towards diazonium salt. Examples of successful diazonium grafting on oxygenated NDs have been reported in the literature, but always with the help of an external energy source (sonication or high energy milling process),^{28,52} used to 5 break the C-N bonds and/or to induce damages to the diamond phase. Graphitization of the NDs can also enhance this reaction.²⁸ On H-NDs, no graphite could be probed using Raman or XPS analysis. Therefore, excluding the effect of sp² species or external energy, the spontaneous coupling onto our 10 H-NDs and its selectivity towards the termination nature strongly suggests a similar grafting mechanism than for diamond layers. The presence of a negative electron affinity and a superficial conductive layer on H-NDs appears as the most convincing argument to explain this reactivity. 15

Conclusions

In this study, high quality and homogeneous hydrogenated nanodiamonds were reacted according to standard reactions 20 commonly performed onto hydrogenated diamond layers. A selective oxidation process involving UV exposure, a photochemical reaction with alkenes and a coupling of diazonium salts were tested on as-received (oxidized) and hydrogenated NDs and grafting efficiencies were compared. All the results 25 demonstrate a very similar chemical behaviour with diamond layers, with the same selectivity towards terminations nature (hydrogenated or oxygenated). As this selectivity is known to be associated with specific surface properties on hydrogenated layers, NEA and SCL, we suggest that similar surface properties 30 arises for the 50 nm HPHT hydrogenated particles.

Acknowledgements

H. A. Girard acknowledges the NADIA project (ANR-PNANO 35 07-045) for a 2008–2010 postdoctoral fellowship.

References

- 1 A. M. Schrand, S. A. C. Hens and O. A. Shenderova, Crit. Rev. Solid State Mater. Sci., 2009, 34, 18.
- 2 S.-J. Yu, M.-W. Kang, H.-C. Chang, K.-M. Chen and Y.-C. Yu, J. Am. Chem. Soc., 2005, **127**, 17604.
- 3 Y.-R. Chang, H.-Y. Lee, K. Chen, C.-C. Chang, D.-S. Tsai, C.-C. Fu, T.-S. Lim, Y.-K. Tzeng, C.-Y. Fang, C.-C. Han, H.-C. Chang and W. Fann, *Nat. Nanotechnol.*, 2008, **3**, 284.
- 4 G. Dantelle, A. Slablab, L. Rondin, F. Lainé, F. Carrel, 45 P. Bergonzo, S. Perruchas, T. Gacoin, F. Treussart and J.-F. Roch, J. Lumin., 2010, 130, 1655.
- 5 T.-L. Wee, Y.-W. Mau, C.-Y. Fang, H.-L. Hsu, C.-C. Han and H.-C. Chang, *Diamond Relat. Mater.*, 2009, **18**, 567.
- 6 V. Vaijayanthimala, Y.-K. Tzeng, H.-C. Chang and C.-L. Li, *Nanotechnology*, 2009, **20**, 425103.
- 7 Y. Yuan, X. Wang, G. Jia, J.-H. Liu, T. Wang, Y. Gu, S.-T. Yang, S. Zhen, H. Wang and Y. Liu, *Diamond Relat. Mater.*, 2010, **19**, 291.
- 8 A. M. Schrand, H. Huang, C. Carlson, J. J. Schlager, E. ÅŒsawa, S. M. Hussain and L. Dai, J. Phys. Chem. B, 2007, 111, 2.
- 9 H. Huang, E. Pierstorff, E. Osawa and D. Ho, *Nano Lett.*, 2007, 7, 3305.
- 10 H. J. Huang, E. Pierstorff, E. Osawa and D. Ho, ACS Nano, 2008, 2, 203.
- 11 L.-C. L. Huang and H.-C. Chang, Langmuir, 2004, 20, 5879.
- 12 V. Grichko, V. Grishko and O. Shenderova, *Nanobiotechnology*, 2007, **2**, 37.

50

- 1 13 X. Kong, L. C. Huang, S. C. Liau, C. C. Han and H. C. Chang, Anal. Chem., 2005, 77, 4273.
 - 14 A. Kruger, Y. Liang, G. Jarre and J. Stegk, J. Mater. Chem., 2006, 16, 2322.
 - 15 A. Krueger, J. Stegk, Y. Liang, L. Lu and G. Jarre, Langmuir, 2008, 24, 4200.
- 16 Y. Liu, Z. Gu, J. Margrave and V. Khabashesku, Chem. Mater., 2004, 16, 3924.
- 17 S. Osswald, G. Yushin, V. Mochalin, S. O. Kucheyev and Y. Gogotsi, J. Am. Chem. Soc., 2006, 128, 11635.
- 18 N. S. Xu, J. Chen and S. Z. Deng, Diamond Relat. Mater., 2002, 11, 249.
- 19 H. Girard, J. Arnault, S. Perruchas, S. Saada, T. Gacoin, J.-P. Boilot and P. Bergonzo, Diamond Relat. Mater., 2010, 19, 1117.
- 20 W. S. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith and R. J. Hamers, Nat. Mater., 2002, 1, 253.
- 15 21 T. Strother, T. Knickerbocker, J. Russell, J. Butler, L. Smith and R. Hamers, Langmuir, 2002, 18, 968.
 - 22 A. Hartl, E. Schmich, J. A. Garrido, J. Hernando, S. C. R. Catharino, S. Walter, P. Feulner, A. Kromka, D. Steinmuller and M. Stutzmann, Nat. Mater., 2004, 3, 736.
 - 23 Y. Zhong and K. Loh, Chem.-Asian J., 2010, 5, 1532.
 - 24 M. P. Seah, Surf. Interface Anal., 1989, 14, 488.
 - 25 D. A. Shirley, Phys. Rev. B: Solid State, 1972, 5, 4709
 - 26 J. H. Scofield, J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129.
 - 27 S. Ji, T. Jiang, K. Xu and S. Li, Appl. Surf. Sci., 1998, 133, 231.
 - 28 Y. Liang, M. Ozawa and A. Krueger, ACS Nano, 2009, 3(8), 2288.
 - 29 C.-L. Cheng, C.-F. Chen, W.-C. Shaio, D.-S. Tsai and K.-H. Chen, Diamond Relat. Mater., 2005, 14, 1455.
- ²⁵ 30 D. Ballutaud, N. Simon, H. Girard, E. Rzepka and B. Bouchet-Fabre, Diamond Relat. Mater., 2006, 15, 716.
 - 31 L. Ley, R. Graupner, J. B. Cui and J. Ristein, Carbon, 1999, 37,
 - 32 S. Ferro, M. Dal Colle and A. De Battisti, Carbon, 2005, 43, 1191.
 - 33 S. Szunerits and R. Boukherroub, J. Solid State Electrochem.,
- 30 2008, 12, 1205.

- 34 M. Wang, N. Simon, G. Charrier, M. Bouttemy, A. Etcheberry, M. S. Li, R. Boukherroub and S. Szunerits, Electrochem. Commun., 2010, 12, 351.
- 35 J.-S. Tu, E. Perevedentseva, P.-H. Chung and C.-L. Cheng, J. Chem. Phys., 2006, 125, 174713.
- 36 J. Pinson and F. Podvorica, Chem. Soc. Rev., 2005, 34, 429.
- 37 S. Lud, M. Steenackers, R. Jordan, P. Bruno, D. Gruen, P. Feulner, J. Garrido and M. Stutzmann, J. Am. Chem. Soc., 2006, 128, 16884.
- 38 L. Tessier, G. Deniau, B. Charleux and S. Palacin, Chem. Mater., 2009, 21, 4261.
- 39 M. Toupin and D. Belanger, J. Phys. Chem. C, 2007, 111, 3594.
- 10 40 H. Notsu, T. Fukazawa, T. Tatsuma, D. A. Tryk and Y. Fujiwara, Electrochem. Solid-State Lett., 2001, 4, H1.
- 41 H. Notsu, I. Yagi, T. Tatsuma, D. A. Tryk and A. Fujishima, Electrochem. Solid-State Lett., 1999, 2, 522.
- 42 T. Ando, K. Yamamoto, M. Ishii, M. Kamo and Y. Sato, J. Chem. Soc., Faraday Trans., 1993, 89, 3635.
- 43 R. Boukherroub, X. Wallart, S. Szunerits, B. Marcus, P. Bouvier 15 and M. Mermoux, Electrochem. Commun., 2005, 7, 937.
- 44 P. Actis, M. Manesse, C. Nunes-Kirchner, G. Wittstock, Y. Coffinier, R. Boukherroub and S. Szunerits, Phys. Chem. Chem. Phys., 2006, 8, 4924.
- 45 M. Ozawa, M. Inaguma, M. Takahashi, F. Kataoka, A. Kruger and E. Osawa, Adv. Mater., 2007, 19, 1201.
- 2046 O. A. Williams, J. Hees, C. Dieker, W. Jäger, L. Kirste and C. E. Nebel, ACS Nano, 2010, 4, 4824.
- 47 F. Maier, M. Riedel, B. Mantel, J. Ristein and L. Ley, Phys. Rev. Lett., 2000, 85, 3472.
- 48 C. Bandis and B. B. Pate, Phys. Rev. Lett., 1995, 74, 777
- 49 J. B. Cui, J. Ristein and L. Ley, Phys. Rev. Lett., 1998, 81, 429.
- 25 50 D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto and C. E. Nebel, Phys. Status Solidi A, 2006, 203, 3245.
- 51 F. Maier, J. Ristein and L. Ley, Phys. Rev. B, 2001, 64, 165411.
- 52 C. Mangeney, Z. Qin, S. A. Dahoumane, A. Adenier, F. Herbst, J.-P. Boudou, J. Pinson and M. M. Chehimi, Diamond Relat. Mater., 2008, 17, 1881.

35

30

1

5

40

45

50

40

35

55

50