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Abstract 
This work investigates the possibility of combining Monte Carlo (MC) simulations to 
a denoising algorithm for the accurate prediction of images acquired using amorphous 
silicon (a-Si) electronic portal imaging devices (EPIDs). An accurate MC model of the 
Siemens OptiVue1000 EPID was first developed using the PENELOPE code, integrating 
a non-uniform backscatter modelling. Two already existing denoising algorithms were 
then applied on simulated portal images, namely the iterative reduction of noise 
(IRON) method and the locally adaptive Savitzky-Golay (LASG) method. A third 
denoising method, based on a nonparametric Bayesian framework and called DPGLM 
(for Dirichlet Process Generalized Linear Model) was also developed. Performances 
of the IRON, LASG and DPGLM methods, in terms of smoothing capabilities and 
computation time, were compared for portal images computed for different values of 
the RMS pixel noise (up to 10%) in three different configurations, a heterogeneous 
phantom irradiated by a non-conformal 15 × 15 cm² field, a conformal beam from a 
pelvis treatment plan, and an IMRT beam from a prostate treatment plan. For all 
configurations, DPGLM outperforms both IRON and LASG by providing better 
smoothing performances and demonstrating a better robustness with respect to noise. 
Additionally, no parameter tuning is required by DPGLM, which makes the denoising 
step very generic and easy to handle for any portal image. Concerning the computation 
time, the denoising of 1024 × 1024 images takes about 1 h 30, 2 h and 5 min using 
DPGLM, IRON, and LASG, respectively. This paper shows the feasibility to predict 
within a few hours and with the same resolution as real images accurate portal images, 
combining MC simulations with the DPGLM denoising algorithm. 

 
PACS code: see http://www.aip.org/pacs: 87.10.Rt (Monte Carlo simulations), 
87.55.Qr (Quality assurance in radiotherapy), 87.56.Fc (Quality assurance equipment), 
02.50.-r (Probability theory, stochastic processes, and statistics), 02.60.Ed 
(Interpolation; curve fitting). 

Submitted to: Physics in Medicine and Biology 
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1. Introduction 
Over the past several years, the need for patient-specific quality assurance (QA) has become 
increasingly important, driven by the complexity of current delivery techniques such as intensity 
modulated radiation therapy (IMRT) and intensity modulated arc therapy (IMAT). In this context, 
electronic portal imaging devices (EPIDs) have proved to be valuable tools not only for patient 
positioning control, but also for dosimetric evaluation of complex treatment plans in IMRT and more 
recently in IMAT (McCurdy and Greer 2009, Iori et al 2010). Many dosimetric verification 
approaches using EPIDs were investigated until now and were presented in detail in a recent 
comprehensive review (van Elmpt et al 2008). They can be broadly classified into two groups: one is 
based on the comparison of a predicted fluence or dose at the detector with a portal image acquired 
before or during the treatment (McCurdy et al 2001, van Esch et al 2004, Spezi and Lewis 2002, van 
Elmpt et al 2005), while the other relies on the estimation of the dose delivered to the patient from the 
portal image, using either a backprojection algorithm (Wendling et al 2006) or fluence profiles 
extracted from the acquired portal images (Steciw et al 2005). 

Prediction accuracy is essential to guarantee highly accurate QA using EPIDs. Indeed, the high 
resolution of current EPIDs (pixel size down to 0.39 mm) allows recording variations in the energy 
fluence due to MLC specific effects (inter- and intraleaf leakage, rounded leaf end transmission, 
tongue-and-groove). The portal image prediction model should hence include all these effects so that 
the discrepancies between measured and predicted images could be correctly interpreted. Two 
methods were proposed for the portal dose image prediction; one is based on full forward Monte Carlo 
(MC) simulation of the image formation process, which offers a high accuracy at the expense of a 
large computation time. The kernel convolution method was introduced as an alternative to reduce this 
computation time. In this method, the predicted image is calculated by convolving the incident 
fluence, either extracted from the treatment planning system (TPS) or calculated by MC simulations, 
with EPID dose response kernels. Two kinds of kernels were used: analytical or parameterized dose 
kernels (Van Esch et al 2004, Kirkby and Sloboda 2005, Wendling et al 2006, Van Elmpt et al 2006, 
Greer et al 2007, Vial et al 2008, Greer et al 2009), and pre-calculated MC-based dose kernels 
(McCurdy et al 2001, Warkentin et al 2003, Steciw et al 2005, Li et al 2006, Chytyk and McCurdy 
2006, 2009, Wang et al 2009). As already pointed out (Vial et al 2008, Greer et al 2009), kernel 
convolution methods may reach a high level of precision, only if they combine both an accurate 
method to derive the energy fluence and an accurate modelling of the EPID dose response kernels. 
This latter point is particularly delicate because of the complexity of the EPID dose response. The 
phosphor scintillation layer contained in current EPIDs causes signal blurring, due to optical glare 
(Warkentin et al 2003) and scatter within the scintillation layer: this effect could be explicitly 
modelled using an additional kernel or simply by a uniform material layer beneath the imager adding 
to the model. The high atomic number of the scintillation layer is also responsible for an 
oversensitivity to low energy radiation. As a consequence, EPIDs exhibit an energy-spectra dependent 
response (Schach von Wittenau 2002, Kirkby and Sloboda 2005) and are very sensitive to all potential 
causes of beam energy variations, such as field size and beam hardening in the linac head (Sheikh-
Bagheri and Rogers 2002) caused by the beam modifiers such as the MLC (Kim et al 2001) and by the 
patient or the phantom placed in the beam (Jarry and Verhaegen 2007). Backscattered radiation arising 
from the support arm of the EPID contributes also significantly to the signal and should be explicitly 
modelled in the kernel. As shown by some authors (Greer et al 2009, Ko et al 2004, Moore and 
Siebers 2005, Siebers et al 2004, Wang et al 2009), this backscatter contribution can be non-uniform 
and has to be taken into account for extended field modelling (Cufflin et al 2010). Even though many 
improvements were included in the generation of dose kernels these past years to take all these effects 
into account, kernels are usually generated for a limited number of irradiation configurations and are 
thus not specific. In the work of Wang et al (2009), there was an attempt to generate adaptive MC-
based EPID kernels in a more flexible way but they are, for instance, not adapted to the prediction of 
extended field as they did not model a non-uniform backscatter. 

Although computationally intensive, MC simulations offer today the most appropriate and accurate 
technique to predict reliably both energy fluence maps and dose to the detector, overcoming the 
limitations of convolution methods in modelling all different irradiation configurations. Several works 
were devoted to full forward MC prediction of portal images (Spezi and Lewis 2002, Chin et al 2003, 
Siebers et al 2004, Jarry and Verhaegen 2005, Parent et al 2006, Cufflin et al 2010) using the 
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BEAM/DOSXYZ MC codes. When considering the real pixel size of portal images acquired by 
current EPIDs, i.e about 0.4 mm, the calculation of a 0.5% Root Mean Square (RMS) pixel noise 
image would require a computation time estimated to be about one month on 96 CPUs and a phase-
space file (PSF) storing about 4 × 1010 photons, which means a storage space of about 3.5 To. In order 
to balance the trade-off between acceptable computation times and production of portal images with 
meaningful RMS pixel noise, the pixel size in the MC simulated image was chosen around 2 mm most 
of the time. As a direct consequence, the predicted image is more blurred than the measured one and 
effects of rounded leaf ends, tongue-and-grooves, and interleaf transmission could be washed, hence 
potentially leading to problems in the interpretation of errors. 

In this study, we propose to explore a new methodology to predict portal images, based on the 
denoising of MC pre-calculated images. The aim is to compute reference EPID images at the same 
resolution as the measured images, while keeping computing times at a reasonable level. The 
objectives of this work are hence twofold: (1) to develop and commission a MC model for the 
Siemens Optivue1000 EPID using the PENELOPE code, and (2) to develop a new portal image 
prediction method combining MC simulations to an adequate 2D denoising technique. To this end, we 
tested smoothing techniques usually employed in radiotherapy for 3D dose distribution denoising, 
namely the IRON method (Iterative Reduction Of Noise, Fippel and Nüsslin 2003) and the locally 
adaptive Savitky-Golay filtering or LASG (Kawrakow 2002), and we assessed their performances in 
denoising MC predicted images. A new 2D denoising technique, based on non parametric Bayesian 
framework and called DPGLM (for Dirichlet Process Generalized Linear Model) (Hannah et al 2011), 
was also developed and was demonstrated to be particularly suited to very noisy images. Denoising 
performances of DPGLM were compared to those of IRON and LASG in terms of accuracy and 
computation time. 

 
2. Materials and methods 
2.1. Materials 
Experiments were carried out on a Siemens ARTISTETM linear accelerator (linac) (Siemens Medical 
Solutions, Erlangen, Germany), operating at 6 MV and equipped with a 160-MLCTM. The 160-MLC 
features a single focused design that consists of 160 leaves, mounted on two leaf banks. They are 
arranged in an alternative pattern of upper and lower leaves, so that the source-to-collimator distance 
is 460 mm and 452 mm for lower and upper leaves, respectively. Each leaf is 95 mm thick, with a 
projected leaf width of 5 mm at the machine isocenter, and has a rounded edge in combination with an 
S-shaped middle-part, whereas its sides are completely flat, without any tongue or groove. A new 
slanted leaf design replaced the tongue and groove system to allow complete interdigitation. More 
details on the design of the 160-MLC can be found elsewhere (Tacke et al 2008, Klüter et al 2011, 
Prah et al 2011). 

A Siemens OptiVueTM 1000 EPID (Siemens Medical Solutions) is mounted on the linac gantry: it 
is an amorphous silicon (a-Si) flat panel device with an active detection area of 41 × 41 cm², and a 
matrix of 1024 × 1024 pixels, each pixel having a square pitch of 0.39 mm. It was operated by the 
software coherence Therapist Workspace (Siemens Medical Solutions). The EPID was positioned with 
the surface of the detector at 100 cm from the source. No additional buildup was used on the EPID 
since this is the standard acquisition configuration for nonzero gantry angle measurements. 

Calibration curves allowing the conversion of MC dose to an acquired portal image intensity were 
obtained for a 10 × 10 cm² field at isocenter, by taking portal images of solid water slabs of different 
thicknesses, with machine dose rate settings of 100 MU min-1. 

 
2.2. Monte Carlo simulations 
2.2.1. Linac head and MLC modelling.   MC simulations of the 6 MV photon beam of the 
ARTISTE linac were performed using the 2006 release of the PENELOPE code (Salvat et al 2006). A 
new version of the main program PENMAIN  was developed in our institute, in which several 
conventional variance reduction techniques (selective bremsstrahlung splitting, Russian roulette 
combined with angular splitting, and rotational splitting) were implemented. This new version is also 
parallelized based on the standard MPI message passing interface and can be run on a cluster 
consisting of seven machines, each with 12 × 2,26 GHz processors, and twelve machines, each with 
24 × 2,26 GHz processors, hence a total of 372 processors. In this work, only the selective 
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bremsstrahlung splitting and the Russian roulette combined with angular splitting techniques were 
activated for the linac part. The geometry of the linac head was described in detail, based on 
information supplied by Siemens. The energy-loss cutoff values Wcc and Wcr were set equal to 500 keV 
and 10 keV, respectively, and the multiple-scattering parameters C1 and C2 to 0.05, everywhere. 
Commissioning of the linac model was performed by comparing measured and simulated percentage 
depth doses (PDD) and lateral dose profiles at dmax, 5 and 10 cm for open square fields from 5 × 5 to 
30 × 30 cm² at a source-to-surface distance of 100 cm (Lazaro-Ponthus et al 2011). The simulations 
reproduced the measurements within 1% for the PDDs and within 2% / 2 mm for the lateral dose 
profiles. 

The modelling of the MLC is an important issue and should be conducted carefully, since high 
resolution EPID images will be simulated. The 160-MLC geometry (leaf shape and arrangement) was 
fully described following the manufacturer’s specifications and using the PENGEOM geometry routine 
distributed with PENELOPE (Le Loirec et al 2012). An in-house calibration method based on the work 
of Boyer and Li (1997) was developed to predict the leaf positions for all the MLC leaves from the 
information reported in the DICOM file (LeafJawPosition and LeafJawBoundaries). A script was then 
written to convert automatically leaf information stored in the DICOM file into the geometry file 
required by the PENELOPE code. The movable skin method developed by Brualla et al (2009) was also 
implemented to speed up calculations within the jaws and the MLC. This method can be seen as a 
range-rejection technique by means of the geometry definition and presents the advantage of keeping 
unchanged the physics, thus preserving the accuracy provided by MC simulations. In the MLC 
structure, the following parameters were set: in the non-skin region, C1 = C2 = 0.1, Wcc = 200 keV, Wcr 

= 50 keV, the energy absorption for electrons and positrons was set to 200 keV, and the energy 
absorption for photons was set to 50 keV; in the skin region, the energy absorption of electrons and 
positrons was increased to 1 MeV, while keeping the other parameters unchanged. 

In simulations dedicated to the commissioning of the EPID model, the PSF used to store the 
information about each particle exiting the linac head was recorded in a plane located 40 cm 
downstream from the target, just below the jaws. A number of 5 × 108 histories were simulated: this 
represents about 100 million and 1000 million photons stored in the PSFs, necessary to achieve 
uncertainties of less than 2% in computing portal images of the 5 × 5 cm² and 20 × 20 cm² fields, 
respectively. 
 
2.2.2.OptiVue1000TM EPID modelling.  The EPID was also modelled using the PENELOPE 
code. The model consists of a sequence of thirteen layers described in terms of geometry and materials 
according to information provided by Siemens. It includes the main components of the EPID, such the 
1 mm-thick copper plate and the phosphor scintillation screen (Lanex Fast Back screen, Eastman 
Kodak Comp., Rochester, NY), as well as the printed circuit-board materials and the rear housing. As 
suggested by Siebers et al (2004), the lateral dimensions of the EPID were set larger in the model than 
the current dimensions (51 × 51 cm² instead of 41 × 41 cm²) to approximate the materials surrounding 
the cassette. Portal images were computed by scoring the energy deposited in the phosphor layer on a 
virtual grid. 

To mimic backscattered radiation arising from the rear housing of the detector and from structures 
surrounding the EPID (gantry), and to model as close as possible this non-uniform backscattering, an 
effective representation of the backscattering components was introduced in the model following the 
method proposed by Cufflin et al (2010). To this end, uniform water-equivalent slabs of varying 
thicknesses, ranging from 1 to 70 mm, were added downstream from the initial thirteen-layer model, 
and corresponding images were simulated for 10 × 10 and 20 × 20 cm² fields. By comparing profiles 
drawn in the inline and crossline directions on simulated and acquired images, a non-uniform map of 
water-equivalent slabs can be deduced. The optical glare effect was not explicitly modelled here but is 
included in the additional backscatter layer. 
 
2.2.3. Commissioning of the EPID model 
The EPID model was validated against experimental data for two irradiation configurations. First, 
portal images without any phantom in the beam were acquired for different jaw defined field sizes 
(5 × 5, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 cm²) with the EPID positioned at a 100 cm source-to-
detector distance (SDD). Second, a layered heterogeneous phantom, described in figure 1, was placed 
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in the beam, its entrance face located at 67.8 cm from the source. This phantom is made of two 
30 × 30 × 5 cm3 slabs of water equivalent material (1.04 g/cm3), a 30 × 30 × 2 cm3 slab of CIRS bone 
equivalent material (1.8 g/cm3) and two 30 × 16 × 8 cm3 slabs of CIRS lung equivalent material (0.3 
g/cm3), separated by a 3 cm air gap. 
 

 

Figure 1. Description of the heterogeneous phantom used in the commissioning of the EPID model. 

 
For this validation step, the denoising techniques were not already available; hence, portal images 

were computed on a 256 × 256 pixel virtual grid (pixel size: 1.6 mm) to decrease the simulation 
runtime. For both configurations (in-air and with the phantom in the beam), acquired and simulated 
images were compared using a 2% / 2 mm gamma-index. For the in-air configuration only, portal 
images were also computed without including the backscatter correction into the model, and gamma-
index values obtained with both EPID models were compared. 

 
2.3. Description of EPID image denoising techniques and implementation 
In order to denoise simulated portal images, three denoising techniques were implemented: IRON, 
LASG and DPGLM. The principles of the IRON and LASG methods are first quickly reminded; the 
principles of the newly developed technique DPGLM, and the rationale for its development, are also 
described in detail below. 
 
2.3.1. Iterative Reduction Of Noise (IRON). The IRON denoising method proposed by Fippel and 
Nüsslin (2003) relies on the minimization of a criterion combining two terms: one accounting for the 
data adjustment and the other one encouraging low curvature. But since the curvature penalty in IRON 
is non-convex, a global minimum solution is not guaranteed. Another difficulty in the IRON method 
lies in the roughness of the non differentiable penalty. Minimization routines like conjugate gradient 
or quasi-Newton methods are known to be non optimal for such non smooth functions. 

Initially designed to perform on 3D dose distributions in radiotherapy, IRON is facing new 
challenges in the context of portal image denoising. With a pixel size of about 2 mm, the algorithmic 
difficulties mentioned above tend to be mitigated since the MC calculated dose images can exhibit a 
convenient signal-to-noise ratio (SNR). In this situation, the initial point of the optimization, which is 
taken to be the MC data, is not “too far” from the desired solution. But this is no longer the case when 
one wants to maintain the EPID physical pixel size (0.39 mm) in the MC simulations. The IRON 
technique faced here to a much noisier environment in order to reach reasonable MC computation 
times. Initialization through raw MC data can thus reveal the ill-behavior of the minimization routine 
and extremely slow convergence to a local minimum. This initialization point dependency may appear 
troublesome and this is one of our motivations in proposing a new method which allows relaxing this 
constraint. 

Note that, due to the large amount of variables (� = 1024 × 1024 = 10485764), we resorted to 
use a limited-memory Broyden, Fletcher, Goldfarb, Shanno algorithm (LM-BFGS) (Liu and Nocedal 
1989). The purpose of LM-BFGS is to avoid in computations the approximation of the inverse of the 
Hessian matrix whose storage size is � × �. Instead, this algorithm maintains only the history of the 
m most recent updates (points and gradients) which are used in place of explicit matrix-vector 
products involving the inverse of the Hessian. For EPID images denoising, we fixed m = 100. We also 
notice that the best performances of the algorithm were reached when tuning the trade-off parameter of 
IRON original implementation	
 = 0.05. 
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2.3.2. Locally Adaptative Savitzky-Golay filtering (LASG). The LASG algorithm has gained 
popularity in 3D dose denoising since its introduction by Kawrakow (2002). The original Savitzky-
Golay smoothing algorithm (Savitzky and Golay 1964) relies on a polynomial regression over a 
neighbourhood around each data point and retains the smoothed value at the central point. Savitzky 
and Golay showed that, once the window has been defined, the smoothing algorithm amounts to a 
linear filter. The modification proposed by Kawrakow allows choosing a window size in order to 
optimize the trade-off between smoothing capacities and bias reduction. The algorithm starts with an 
initial maximum window size which is reduced, following a specific strategy, until the satisfaction of a ��- goodness of fit test. This test is based on the assumption that the noise follows a Gaussian 
distribution entirely characterized by the standard deviation stored in the simulated dose data file. 
Performances of this approach for 3D MC dose denoising were reported in El Naqa et al (2005) and 
contrasted with alternative methods. When applying LASG to EPID simulated data, detector 
characteristics have to be considered. First, the small pixel size and the low detection efficiency induce 
a non-gaussian noise distribution which makes suboptimal the underlying model of the goodness of 
the fit test. Second, the MC estimated standard deviation may become itself highly noisy. These 
concerns highlight the particular attention to be paid to the tuning of the �����  parameter. 
  
2.3.3 Dirichlet Process Generalized Linear Model (DPGLM).  In the statistical interpretation 
of the IRON criterion, the curvature penalty can also be seen as a kind of prior term characterizing our 
degree of belief in a smooth dose deposit. This Bayesian rephrasing of the denoising problem forms 
the framework of the proposed approach. A key point of the Bayesian methods is that they give access 
to the estimation uncertainty. Namely, we seek for the whole set of solutions, expressed by their 
posterior distribution, instead of looking for a particular one only. We retain for the dose estimate the 
posterior mean – which minimizes the L2 risk. As a side-effect, DPGLM is able to propagate the 
whole information present in the MC data. 

Another characteristic of our approach is its nonparametric feature. Since the number of variables 
is very large in the EPID MC data denoising problem (� = 1024 × 1024 pixels), it turns out that it is 
convenient to consider the problem as the estimation of a continuous surface in ℝ� which amounts to 
infer over a potentially infinite number of parameters, leading to a so-called Bayesian nonparametric 
regression approach. All statistical material cannot be expressed here and readers are invited to refer 
to other references to get an insight into involved methodologies (Müller et al 1996, Hjort et al 2010, 
Hannah et al 2011). In this framework the � computed EPID data ����, ���, ��� for � = 1,… , �, are 
modelled, where ����, ���� stands for the pixel coordinates and �� for the pixel calculated dose. The 
method lies in the estimation of ����, ��, ��, the joint distribution of ���, ��, ��, from simulated points ����, ���, ��� in a nonparametric way, and to take for the denoised dose  ���, ��� for all ���, ��� ∈ ℝ�: 

 

 	���, ��� = "	��|��, ��� = 	$ �	.		���|��, ���	 � = 	% �	. ����, ��, ��	 �ℝ% ����, ��, ��	 �ℝℝ  (1) 

 
Nonparametrics arise from the choice of a Dirichlet Process Mixture (DPM) for prior specification 

of the joint density ����, ��, ��. This model is based on the random distribution &, 
 & ∼ DP�*, &+� 
 

where the symbol “∼” means “is distributed as” and DP�*, &+� stands for the Dirichlet Process 
distribution (Hjort et al 2010) with mean measure &+	and concentration parameter *. This distribution 
over random probability distributions plays a central role in the nonparametric modeling. An 
interpretation of DP by Sethuraman (1994) lets us express the random measure &�⋅� as 

&�⋅� = -
. 	/01�⋅�2
.3�  

with 
� = 4�, 
. = 4.∏ �1 −.7�83� 48� such that 4.~Beta�1, *� (see Appendix B for definition) and />�⋅� stands for the Dirac delta function located at ?. Here, @.~&+ represents the parameters 
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associated to the ABC component of &. Nonparametrics come from the (potentially) infinite sum in the 
DP prior for  &. This leads to the following random density ����, ��, �� 

����, ��, �� = -
.	�01���, ��, ��2
.3�  

 
where �01 	stands for ABC component of  ����, ��, ��, parameterized by @.. We now make explicit �01 
for the application of DPGLM to EPIDs images denoising. We use the additional notations @. =DE. , F. , G. , H.�I and E. = �E�. , E�.�, F. = �F�., F�.�, 

 �01���, ��, �� = J���|E�. , F�.�	J���|E�. , F�.�	JD�KG.L ⋅ MN.���, ���, H.�I 
 
where J�⋅ |E, F� represents the normal (gaussian) distribution with mean E and variance F, MN.���, ��� 
is a centered regressors vector and G. the regression coefficient vector. Note that the regression model 
for the outcome � given covariates ���, ��� may be chosen as linear (i.e. MN.���, ��� = �1, �� −E�. , ��−E�.�′ in this case) or polynomial in the DPGLM approach (e.g. MN.���, ��� = �1, �� −E�. , ��−E�. , ��� − E�.����−E�.�, ��� − E�.��, ��� − E�.���′ for quadratic regression).  

The prior measure &+is taken as follows. Priors for means E are normal distributions, priors for 
variances F and H� are inverse-gamma, and prior for regression coefficients G is multivariate normal. 
Using Bayes rule, we deduce from the expression of ����, ��, �� that  

 

���|��, ��� = - 
.	J���|E�. , F�.�	J���|E�. , F�.�∑ 
8283� J���|E�8 , F�8�	J���|E�8 , F�8�JD�KG.L ⋅ MN.���, ���, H.�I2
.3�  

and 

"��|��, ��� = - 
. 	J���|E�., F�.�	J���|E�. , F�.�∑ 
8283� J���|E�8 , F�8�	J���|E�8 , F�8�	G.L ⋅ MN.���, ���
2
.3�  

 
The latter expression reveals our prior in the Bayesian nonparametric approach for the smoothed 

EPID image. 
Note that heteroscedasticity and non-gaussian behaviour are handled in the model of ���|��, ��� 

thanks to the mixture of Gaussian distribution JD�KG.L ⋅ MN.���, ���, H.�I for observed dose � at any �. 
Another remark is that we may consider a multivariate normal prior for � = ���, ��� ∼ J��|E, Γ� 
which avoids privileging EPID matrix directions. But, since jaws and MLC geometries share the same 
axes, this oriented prior reveals appealing. 
 From the elicited prior defined above and data ����, ���, ���, we aim at computing the posterior 
distribution ����, ��, �|���, ���, ��, … , ��R, ��R, �R� and conditional expectation  S	���, ��� ="��|��, ��, ���, ���, ��, … , ��R, ��R, �R�. The exact computation of the posterior distribution is 
intractable and we use a Markov Chain Monte-Carlo (MCMC) approximation scheme (Gibbs sampler) 
to draw samples from the target distribution. In order to make inference feasible over infinite 
dimensional objects (infinite sum in DP), we follow a slice sampler approach from Kalli et al. (2011), 
where only a random finite number T of components are involved per iteration. At each iteration �U� of 
the MCMC procedure, we are thus able to sample a denoised dose surface  ���, ����B�. For T samples, 
the posterior distribution is given by the set of  ���, ����B� for  U = 1,… , V, and the dose estimate 
(posterior mean) is expressed as: 
 

We can as well compute the posterior standard deviation or credible intervals from the collection W ���, ����B�X. 
All parameters of the DPM prior distribution are also sampled at each iteration, assuming an 

additional degree of hierarchy in the dose data model and putting vague priors on these parameters. 
Algorithm details of the Gibbs sampler are given in Appendix A. 

 S	���, ��� ≈ 1V- 	���, ����B�Z
B3�  (2) 
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2.4. Assessment of the denoising technique performances 
2.4.1. Description of the denoising test cases.  Denoising effectiveness of the three algorithms 
presented above was assessed on the two following test cases.  
In the first test case, portal images corresponding to the irradiation of the heterogeneous phantom with 
a squared 15 × 15 cm² field were computed using the commissioned EPID model. A virtual grid of 
1024 × 1024 pixels, such as the physical detection matrix of the OptiVue1000 EPID, was considered 
in the simulation. Monte Carlo simulations of 50, 100, 500, 1000, 1700, 3000 and 5000 million 
photons were performed, resulting in computed portal images with associated statistical uncertainties 
on the maximum dose of 15, 10, 5, 3.5, 2, 1.8 and 1.6%. A splitting factor of 10 was used to recycle 
the particles stored in the PSFs for the portal image calculation. 

Simulated portal images were then denoised with the IRON, LASG and DPGLM algorithms. Due 
to computation time limitations linked to EPID MC calculations, the choice of a common reference 
image remains a tricky issue since the image with the smallest RMS pixel noise (1.6%) is still too 
noisy to be taken as the reference. In order to avoid any bias in the comparison, we then resorted to use 
a reference image for each denoising method, namely the image with 1.6% RMS pixel noise denoised 
with the algorithm under test. The reference for the raw MC image evaluation is the 1.6% RMS pixel 
noise MC image itself. 

The goal of the second test case is to challenge the behavior of the denoising algorithms even 
further. For this, a ‘picket fence’ field with alternating leaves open and closed was set on the linac, 
resulting in many steep dose gradient regions. The portal image was acquired by irradiating directly 
the EPID located at 140 cm from the source. Two portal images were simulated using a virtual grid of 
1024 × 1024 pixels: one with a high RMS pixel noise, referred as ‘low SNR’ image in the following 
(PSF storing about 4.5 × 107 photons and recycled ten times) and the other with a low RMS pixel 
noise, referred as ‘high SNR’ in the following (PSF storing about 3 × 108 photons and recycled ten 
times). Once the portal images simulated, they were denoised with the IRON, LASG and DPGLM 
algorithms, and compared to the acquired image. 
 
2.4.2. Assessment criteria. For the first test case described above, the performances of each 
denoising algorithm were assessed not only in terms of accuracy but also in terms of computation 
time. Regarding to accuracy, two criteria were considered: 
• the visual inspection of profiles drawn through portal images: this qualitative criterion is based on 

a subjective appreciation but it can help to appreciate the smoothness added by each denoising 
method, 

• the 1% dose difference test proposed by Fippel and Nüsslin (2003), which is a modified and more 
severe version of the x% / y mm test (Van Dyke et al 1993). It consists here in calculating the 
fraction of pixels presenting a difference of more than 1% of the maximum normalized dose with 
respect to the reference image, in a 600 × 600 pixel central area of the image. 
 

The efficiency of the method combining MC simulations and denoising was also assessed in terms 
of computation time. This issue is crucial because we should know if it is rather spending CPU time 
for smoothing or for simulating additional particle histories. In other words, this should help the user 
to determine the optimal trade-off between computation time and accuracy (or statistical uncertainty in 
the smoothed portal image). To this end, the 1% difference test was also expressed with respect to the 
total computation time necessary to the portal image calculation, equal to the time spent for the MC 
simulations plus the time spent for smoothing. 

For the ‘picket fence’ test, profiles were drawn through the acquired portal image and the denoised 
simulated images, along the direction perpendicular to the leaf motion and on the central axis. They 
were then compared.  

 
2.5. Application to clinical treatment plans 
The developed methodology for portal image prediction was tested with two clinical examples that 
involve different types of fields.  
 A pelvis treatment plan using conformal beams was first considered. In this case, the irradiation 
field is large. The EPID was located at 100 cm from the source and it was irradiated directly. Only one 
of the beams was simulated with PENELOPE. The portal image associated to this beam was then 
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simulated: the image contained 1024 × 1024 pixels and the number of primary particles was chosen so 
that the image was simulated with a RMS pixel noise of 3%, 5.7% and 10% of the maximal dose, 
which represents in the three cases an acceptable SNR from the point of view of denoising. For 
statistical uncertainties of 3% and 5.7%, the PSF used stored about 2.3 × 109 photons, and it was 
recycled ten times for the first, and only once for the second. For a RMS pixel noise of 10%, the PSF 
used stored about 7.1 × 108 photons, and was played once. The quantitative evaluation of the 
performances of IRON, LASG and DPGLM was done by calculating the gamma index between the 
experimental image and the denoised image for all statistical uncertainties, with a 2% / 2.5 mm 
criteria. 
 A prostate IMRT clinical plan was chosen as a second case. This plan was optimized and 
calculated on Konrad (Siemens Medical Systems) and contained five fields equiangularly distributed, 
with step-and-shoot delivery of tiny segments. The EPID was located at 140 cm from the source and it 
was irradiated directly. Only one field (field 2) made of nine segments was simulated. For each 
segment, a PSF was computed so that the RMS pixel noise in the resulting simulated portal image was 
no more than 5%. Each PSF thus contains about 55 millions of photons recycled 20 times. Here again, 
portal images were simulated on a 1024 × 1024 virtual grid. All simulated portal images were 
denoised with IRON, LASG and DPGLM, for comparison. The gamma analysis was performed for 
each individual segment before considering the whole modulated beam. This latter was computed 
following two ways: first, each simulated image was smoothed then weighted by the corresponding 
MU retrieved from the TPS and the resulting weighted images for all segments are added together. In 
a second test, each simulated image was first weighted before adding the images for all segments, and 
the smoothing is performed at the end on the final modulated image. This test was done in order to 
check if smoothing must be done on individual segments or only on the final modulated image. 
Gamma criteria of 2% (of maximum dose) and 2.5 mm in distance were considered for the pixels in 
the image for which the value is greater than 20% of the maximum dose.  
 
3. Results 
3.1. Commissioning of the EPID model 
The model for the Optivue1000 EPID that best matches experimental data includes two kinds of non-
uniform layers of water-equivalent material beneath the 13 layer model: a 50 mm water layer of 
16 × 33 cm², centered in (x=0 cm, y=-4 cm) (the Y axis refers to the inline direction) and anywhere 
else a 30 mm water layer. Profiles drawn through acquired and simulated images in the crossline and 
inline directions are presented on figure 2, for portal images without phantom in the beam. Profiles 
obtained in the crossline direction for the portal images with the heterogeneous phantom in the beam 
are shown in figure 3. 2D gamma-index values for gamma criteria of 2% / 2 mm are also given in 
table 1. These results demonstrate the need to include a correction for backscatter radiation in the 
model to accurately predict portal, especially for large field sizes. They also validate the accuracy of 
our model for a wide range of field sizes and for different irradiation configurations, with and without 
phantom in the beam. 
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Figure 2. Profiles for acquired (blue line) and simulated (red crosses) portal images in the crossline 
(left) and inline (right) directions, for the configuration without phantom in the beam. 

 

 
Figure 3. Profiles for acquired (blue line) and simulated (red crosses) portal images in the crossline 

direction, for the configuration with the heterogeneous phantom in the beam. 
 

 
Table 1. Comparison of gamma-index values obtained for the different configurations. 

Field size 
(cm²) 

 Images without phantom  Images with phantom 
 Without  

backscatter correction 
With 

backscatter correction 
 With  

backscatter correction 
5 x 5  99.4% 99.4%  99.4% 
10 x 10  95.0% 98.4%  98.1% 
15 x 15  88.3% 97.4%  97.5% 
20 x 20  57.2% 95.4%  96.1% 
25 x 25  24.6% 93.1%  95.0% 

  

3.2. Denoising of portal images 
3.2.1. Denoising test case: heterogeneous phantom.  Figure 4 summarizes the fraction of pixels 
which fail the 1% difference dose criterion. In all cases, the interest of using any of the tested 
denoising algorithms is evident, even for MC images with a high SNR. IRON, LASG, and DPGLM 
exhibit similar performances for images with a RMS pixel noise better than 2%. For images with 
higher RMS pixel noise, the statistical basis of DPGLM offers more robustness with respect to noise. 
Indeed, MC images computed with 5% RMS pixel noise could be denoised correctly using DPGLM, 
as proved by the 2% fraction of pixels failing the 1% difference dose criterion. The LASG and IRON 
algorithms would require much less noisy MC pre-calculated images, of about 2% and 3.5% for IRON 
and LASG, respectively in order to reach the same result. We also observe on the profiles shown in 
figure 5 that DPGLM produces smoother images than IRON and LASG while preserving well the 
edges in the high-gradient dose regions. These results demonstrate that it is possible to reach an image 
quality compatible with a clinical interpretation using DPGLM for PSFs that store between 100 
million (10% RMS pixel noise) and 500 million photons (5% RMS pixel noise). Obtaining the same 
image quality using LASG would require a PSF two times larger. With IRON, a PSF three times 
larger would be necessary. Also let notice that figure 5 exhibits the unstable behavior of LASG 
algorithm in high noise context. Indeed, LASG interval’s size adaptation scheme may lead to a zero 
length smoothing window. This situation arises as soon as no window size configuration can satisfy 
the ��- goodness of fit test. As a consequence, these related data points remain unsmoothed and 
appear as outliers in the resulting image. This drawback has been pointed out by authors in Kawrakow 
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(2002). In order to mitigate this effect, they suggest to generate several MC batches and to use a 
weighted average as smoothed estimate owing to the low probability to observe outliers on the same 
pixel for different batches. Nevertheless, for noisy EPID images this probability reveals not negligible. 
 

 
Figure 4. Fraction of pixels failing the 1% difference test for MC raw images (cyan), images denoised 

with IRON (green), LASG (blue) and DPGLM (red). 
 

 
Figure 5. Central profiles drawn through the reference image (black), the MC raw image (cyan), the 

image denoised using IRON (green), LASG (blue) and DPGLM (red), for the 100 million photon PSF. 
 

Concerning computation times, we experienced slow convergence for the IRON algorithm for low 
SNR images, as expected. Despite the needs of significant computing requirements, the structure of 
DPGLM algorithm makes it suitable for parallelization contrary to the LM-BFGS optimization 
algorithm used for IRON. As a consequence, the effective computation times are similar for DPGLM 
and IRON. The MC computation of the 1024 × 1024 simulated image on 100 processors (2.26 GHz) 
of our Linux cluster lasts in 30 minutes when running over 100 million photons from the PSF and 
2 h 30 min when running 500 million photons. In the same configurations, denoising on 1024 × 1024 
images necessitated about 1 h 30 min, 2 h, and 5 min using DPGLM, IRON, and LASG, respectively. 
The complete computation of the portal image using IRON took thus 2 h 30 min and 4 h 30 min for 
100 and 500 million photons, respectively. Using DPGLM, it took 2 h and 4 h for 100 and 500 million 
photons, respectively. Using LASG, it took 35 min and 2 h 35 min for 100 and 500 million photons, 
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respectively. Figure 6 shows the fraction of pixels failing the 1% difference dose criterion test with 
respect to the global computation time of the portal image. 

 
Figure 6. Fraction of pixels failing the 1% difference test for MC raw images (cyan), images 

denoised with IRON (green), LASG (blue) and DPGLM (red) with respect to the global computation 
time. 

 
Although LASG was the fastest algorithm for denoising, we nevertheless observed an optimum in 
terms of accuracy and computing time for DPGLM, on the portal image simulated with a RMS pixel 
noise of 5%. This denoising test case also helped us to define a range of RMS pixel noise values in the 
MC simulated image for which the denoising techniques could be applied relevantly. Hence, we 
noticed that IRON performed well for a RMS pixel noise (σ) smaller than 2 or 3%, LASG for σ 
smaller than 3.5%, and DPGLM for σ of 10% at most. That is why, in the following, portal images 
were then simulated with a σ of no more than 10%. 
 
3.2.2. Denoising test case: picket fence field.   Figure 7 shows the comparison between the 
profile drawn through the experimentally acquired image and through the simulated images for the 
two RMS pixel noise values considered here. These results show that DPGLM performs equally in 
denoising the high and low RMS pixel noise simulated images. The percentage difference between the 
experimental profile and the simulated profiles denoised with DPGLM are within 2% or within 2 mm 
in the region of steep dose gradient. This excellent agreement validates the reliability of the parameters 
used in our MLC model (leaf-end radius, leaf width and leaf side design), and ensures that the MLC 
leaf positions are well reproduced. As already noticed above for the first test case, profiles denoised 
using DPGLM are smoother than those denoised using IRON or LASG (with �[\]� = 1.7�, for the 
high RMS pixel noise image. For the low RMS pixel noise image, both IRON and LASG produce 
many outliers, giving here again a good example of the effects caused by the unstable behvior of both 
algorithms in high noise context. By tuning the �[\]�  value to 10 for the LASG algorithm, the 
simulated images, including the one with high RMS pixel noise, seemed to be better smoothed; but 
this is at the expense of the signal amplitude, which is no more correctly reproduced. 



Denoising techniques combined to MC simulations for the prediction of high-resolution portal images 

13 
 

 
Figure 7. Profiles drawn through the experimental image (black) and the MC raw image (grey 
squares) simulated for a high SNR value (top left)) and a low SNR value (top right). Profiles through 
images denoised with DPGLM (middle left), IRON (middle right), LASG with ����� = 1.7 (bottom 
left) and LASG with ����� = 10 (bottom right) are also compared to the experimental profile (in 
black), for the high SNR value (in red) and the low SNR value (in blue). 
 
3.2.3. Pelvis treatment plan.  Figure 8 shows the acquired portal image for the pelvis treatment plan 
(figure 8a) as well as details in a zoomed area outlined in yellow in image (a). In this outlined area, 
simulated images obtained for a RMS pixel noise of 3%, 5.7% and 10% before smoothing (first 
column), after smoothing with DPGLM (second column), IRON (third column), and LASG (last 
column) are also shown. 
 Images smoothed with IRON looked particularly grainy in the irradiation field: this effect became 
more pronounced as the RMS pixel noise in the simulated image increased. LASG gave images with a 
better quality than IRON, although some spikes could be observed. The amplitude and frequency of 
these spikes became more important as the simulated image became noisy. For all the statistical 
uncertainties considered here, DPGLM outperformed IRON and LASG by providing smoother 
images. However, for the σ = 10% case, it can be seen that details in the high-gradient dose region 
were significantly altered compared to results obtained for σ = 3% or 5.7% on all smoothed images. In 
this case, the level of noise was too high to allow a faithful reproduction of the details in the image 
towards the field edges. These results suggested to model MC portal images with a RMS pixel noise 
smaller than 5% for conformal and IMRT beams. 
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Figure 8. (a) Acquired portal image for the pelvis treatment beam and (b) zoom in the area outlined in 

yellow in (a). In this outlined area, simulated images obtained without denoising with a RMS pixel 
noise of 3%, 5.7% and 10% (d, h and l), using the DPGLM method (e, i and m), the IRON method (f, j 

and n) and the LASG method (g, k and o). 
 

 For the different simulated statistics, the profiles were drawn in the unsmoothed MC image and in 
images smoothed with DPGLM, IRON and LASG, along the white line represented in figure 8a. The 
comparison of profiles is shown in figure 9. Spikes caused by the LASG algorithm can also be clearly 
visible on the profiles and they are particularly important for σ = 5.7% or 10%. For all σ values, 
DPGLM produced smoother profiles than IRON and LASG, and reproduced very well the 
experimental profile. 
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Figure 9. Profiles drawn through the acquired image (black dashed line), the MC image undenoised 

(cyan crosses), the MC image denoised with IRON (green), LASG (blue) and DPGLM (red), for three 
different statistical uncertainties in the simulated image. 

 
 Table 2 gives the results of the gamma analysis performed on MC images computed for the three 
different statistical uncertainties and denoised using IRON, LASG and DPGLM. For σ = 3%, LASG 
and IRON performed equally well, but a little bit worse than DPGLM that gave excellent results. 
IRON showed limitations when σ becomes 5.7%, to the contrary, LASG and DPGLM maintained 
their smoothing capabilities very well. At σ = 10%, only DPGLM managed to smooth correctly the 
image. These results stressed the expected behaviour from IRON, which is at its most successful when 
images are moderately noisy, i.e for σ smaller than 3%. 
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Table 2. Percentage of pixels passing gamma criteria of 2% / 2.5 mm for the simulated images 
calculated for three different statistical uncertainties, and smoothed with DPGLM, IRON and 
LASG. 

RMS pixel noise  DPGLM IRON LASG (����� = 1.7� 
σ = 3%  97.2 94.4 93.5 
σ = 5.7%  96.5 88.4 94.0 
σ = 10%  95.7 46.8 83.0 

 
 Dealing with computation time, the simulation of the portal images for RMS pixel noise of 5.7% 
and 10% took 40 minutes and 14 minutes on 72 processors, respectively. Denoising times are fixed by 
the size of the image to be denoised, and are thus equal to those obtained in section 3.2.1, i.e 1 h 30 
min, 2 h and 5 min using DPGLM, IRON, and LASG, respectively. The overall time required to 
predict portal images for σ = 5.7% was thus of 2 h 10 min, 2 h 40 min and 45 min for DPGLM, IRON, 
and LASG, respectively. 

 
3.2.4. IMRT prostate treatment plan.  Results of the gamma analysis are summarized in table 3. The 
gamma analysis performed on each segment individually showed that 95.2% of points in average 
passed the chosen gamma criteria for DPGLM, 73.3% for IRON and 89.3% for LASG. Low values 
obtained for IRON could be explained by the high level of noise still present in the image after 
smoothing, in particular within the irradiation field. The spikes caused by the use of LASG also 
penalized the gamma value. Here again, DPGLM proved its ability to smooth simulated images with a 
RMS pixel noise of about 5%. 
 

Table 3. Percentage of pixels passing gamma criteria of 2% / 2.5 mm for the simulated images 
smoothed with DPGLM, IRON, and LASG. 

Segment  DPGLM IRON LASG (����� = 1.7� 
1  97.1 72.4 91.3 
2  97.0 70.8 91.2 
3  96.0 67.2 89.0 
4  95.0 67.3 87.3 
5  94.3 69.6 87.3 
6  96.7 68.5 87.9 
7  97.1 75.4 90.3 
8  90.7 80.4 88.8 
9  93.3 88.7 90.4 

All segments smoothed 
individually, then summed 

 97.8 77.2 92.4 

All segments summed, then final 
image smoothed 

 98.2 81.0 80.0 (����� = 1.7� 
94.6 (����� = 10� 

 
 With DPGLM and IRON, very similar results were obtained when either smoothing first each 
segment individually or smoothing the final image obtained after summing all segments. We could 
also notice that the gamma-index value calculated for the whole beam is a little bit better than values 
taken individually for each segment, showing an averaging effect which tends to decrease dose 
gradients in the summed image. This effect could be observed also for IRON and LASG. For LASG, 
we noticed poor results in smoothing after summing all segments if we keep ����� = 1.7. This is due 
to the correlations between the MC data of each segment. Indeed, a common PSF recorded after the 
jaws was used for computing each segment. In this case, the variance of the sum is far greater than the 
sum of the variances and we had to increase �����  value to 10 in order to get better performances. 
Varying the �����  value from 1.7 to 10, the percentage of pixels passing the 2% / 2.5 mm criteria 



Denoising techniques combined to MC simulations for the prediction of high-resolution portal images 

17 
 

increased from 80.0% to 94.6%, almost reaching the same performances as DPGLM. It is likely that 
this inter-segments correlation phenomenon might also affect the IRON performances when working 
on the sum of segments since computed noise values are also used in this method. These results 
showed that an accurate prediction of the portal image for a modulated beam is possible by smoothing 
only the final modulated image rather than each segment individually, which contributes to save time 
during the smoothing step of the prediction algorithm. 
 The simulation of the portal image for one segment took about 15 minutes on 72 processors. Added 
to the computation time devoted to smoothing, the overall time for the portal image prediction of a 
segment was thus of 1 h 45 min, 2 h 15 min and 20 min for DPGLM, IRON, and LASG, respectively, 
if the image is smoothed once after summation of all segments. 
 
4. Discussion 
The present study is, to our knowledge, the first study that proves that the PENELOPE MC code is 
suitable for the prediction of accurate portal images. As already shown by other authors on the Varian 
aS500 EPID (Cufflin et al 2010), a non-uniform backscatter model had to be integrated within the MC 
model in order to take into account for backscattered radiation arising from components that surround 
the EPID cassette, from the arm that supports the EPID and also from the gantry. An accurate 
backscatter modelling is mandatory in order to ensure an accurate prediction of portal images, in 
particular for large field sizes. 

Regarding the denoising part of this work, we have shown the feasibility of the approach based on 
the combination of a smoothing technique with MC simulations to predict portal images with the same 
resolution, and potentially with the same accuracy as experimental images. Using MC simulations 
alone, this objective could not have been reached due to the intensive computational resources that are 
required. Performances of three denoising algorithms were evaluated in this context, in terms of 
accuracy and computation time. Results obtained for the IRON algorithm confirmed that IRON is not 
suitable for denoising problems characterized by a huge number of variables, i.e pixels in the image, 
but much more relevant in denoising 3D dose distributions where less and far bigger voxels are used. 
Better performances for IRON might have been observed if we had applied it on smaller images, for 
instance a portion of the 1024 × 1024 portal image. As expected, IRON was also shown to be heavily 
hindered when very noisy images were considered and it was unable to smooth portal images 
simulated with a RMS pixel noise higher than 3%. In order to facilitate the convergence of IRON, a 
proposed alternative could be to initialize IRON with an image already denoised, for instance the 
image smoothed by LASG since it is the fastest of all the algorithms tested here.  

Good results could be obtained with LASG only if the �����  parameter was tuned in order to 
balance the trade-off between introduced bias and smoothing capabilities. If the �����  value is too 
high, steep dose gradients are too smoothed and too much more bias is introduced; otherwise, if the �����  value initially proposed in Kawrakow et al (2002) was kept, smoothing is not optimal. The 
tuning of the �����  should be done in a trial-and-error process, for each configuration, which could be 
cumbersome and time consuming, and finally not convenient in practice. As noticed in Kawrakow et 
al (2002), some pixels are not denoised at all by LASG and appear as outliers on the smoothed image. 
This issue might be mitigated by working on several batches. But the non gaussianity of the noise is 
increased by working with smaller PSF. This can lead to reinforce the non optimal behaviour of LASG 
in this situation.  

For all the configurations studied in this work, DPGLM outperformed LASG and IRON by 
producing smoother images and being able to smooth relevantly images characterized by a RMS pixel 
noise smaller than 5%. Moreover, to the contrary of LASG and IRON, DPGLM requires neither 
parameter adjustment nor knowledge about the variance of the noise associated to each pixel, making 
this denoising method more generic than LASG. In the case of the IMRT beam where portal images 
for each segment are summed, DPGLM is less sensitive than LASG or IRON to errors caused by the 
inter-segment correlations due to the use of a common PSF to compute each segment. The tuning of 
both IRON and LASG algorithms also reflects this problem and should be revised specifically in order 
to take it into account. One possible alternative could be to compute one independent PSF per segment 
in order to decrease such correlations. 

The overall computation time for the prediction of the portal image corresponds in our method to 
the sum of the time spent for the MC simulation and the time spent for smoothing. It is well known 
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from 2 h 30 min for a 15 × 15 cm² field to about 10 min (on 100 processors) for a small IMRT beamlet
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contrast with LASG or IRON, DPGLM outputs are expressed as functions (as mentioned in section 
2.2.3) and not as matrix values taken over 
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does not entail bias in the denoised image computed at the desired output resolution using DPGLM 
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Figure 10. Results obtained for the 
uncertainty interval computed with DPGLM (red band) is plotted round the DPGLM mean dose 

estimate (red) and compared to reference dose profiles (black).
 
Additionally, DPGLM performance

systematic bias introduced by DPGLM in denoised image
Smedt et al (2006) to evaluate the systematic bias was tested here but images very similar to those 
obtained with the gamma analysis were obtained, yielding no 
regarding to the systematic bias evaluation
on data replications in the future. Finally, the performance
on portal images computed with a patient in the beam, and compared to LASG and IRON.
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that the MC simulation time depends highly on the irradiation field size, and it was show
15 cm² field to about 10 min (on 100 processors) for a small IMRT beamlet

of 5% in the simulated image). Considering smoothing time alone, LASG is by 
far the fastest algorithm compared to other techniques, when implemented on the same hardware 
resources and with identical parallelization efforts, i.e. hybrid parallelization MPI/OpenMP in our 

. However, when considering also the smoothing capabilities, DPGLM reveals interesting 
allows simulating a portal image with a similar quality than using LASG 

PSF storing twice fewer particles. Working with smaller PSF, DPGLM offers hence the possibility to 
save disk storage compared to LASG, which might reveal attractive. It should also be noticed that in 
contrast with LASG or IRON, DPGLM outputs are expressed as functions (as mentioned in section 
2.2.3) and not as matrix values taken over a fixed input data grid. It is thus possible

at any portal plane coordinates whether belonging to the init
data grid or not. This feature may offer some additional flexibility in tuning the trade

smoothing time. Indeed, since DPGLM smoothing time is appro
proportional to the number of input points, we can save time by using a coarser input grid for areas 

e.g. out-of-field regions), reducing then the number of data for these 
regions. Furthermore, it seems reasonable to systematically try to use the coarsest input grid which 
does not entail bias in the denoised image computed at the desired output resolution using DPGLM 

To conclude, DPGLM reveals very interesting denoising properties on 2D por
DPGLM method have not been fully investigated in this work

key feature of the approach lies in the uncertainty estimation over the whole image. This could bring 
enhanced information which can help in practical situations to determine credible intervals containing 

This could also help in the assessment of the denoising method since here, a 
reference image could not be determined easily due to very large computational resources required in 

An example is given in figure 10 where it is showed that credible intervals may be 
assessed and that they contain the expected true dose value. 

. Results obtained for the 100 million photon denoising test case PSF.
uncertainty interval computed with DPGLM (red band) is plotted round the DPGLM mean dose 

estimate (red) and compared to reference dose profiles (black). Raw data are represented by 

DPGLM performance needs to be studied more thoroughly, for instance the 
systematic bias introduced by DPGLM in denoised images. The sliding window test proposed by De 

(2006) to evaluate the systematic bias was tested here but images very similar to those 
ed with the gamma analysis were obtained, yielding no additional 

evaluation. We plan to perform this study using rather a method
. Finally, the performance of DPGLM will also be assessed very soon 

on portal images computed with a patient in the beam, and compared to LASG and IRON.

resolution portal images 

the irradiation field size, and it was shown to vary 
15 cm² field to about 10 min (on 100 processors) for a small IMRT beamlet 

Considering smoothing time alone, LASG is by 
chniques, when implemented on the same hardware 

ion MPI/OpenMP in our 
, DPGLM reveals interesting 

quality than using LASG but with a 
Working with smaller PSF, DPGLM offers hence the possibility to 

It should also be noticed that in 
contrast with LASG or IRON, DPGLM outputs are expressed as functions (as mentioned in section 

fixed input data grid. It is thus possible with DPGLM to 
at any portal plane coordinates whether belonging to the initial simulated 

data grid or not. This feature may offer some additional flexibility in tuning the trade-off between 
time. Indeed, since DPGLM smoothing time is approximately 

proportional to the number of input points, we can save time by using a coarser input grid for areas 
reducing then the number of data for these 

systematically try to use the coarsest input grid which 
does not entail bias in the denoised image computed at the desired output resolution using DPGLM 

on 2D portal images. Some 
in this work. Among them, 

key feature of the approach lies in the uncertainty estimation over the whole image. This could bring 
practical situations to determine credible intervals containing 

This could also help in the assessment of the denoising method since here, a 
computational resources required in 

where it is showed that credible intervals may be 

ising test case PSF. The 3H-
uncertainty interval computed with DPGLM (red band) is plotted round the DPGLM mean dose 

Raw data are represented by cyan dots. 

to be studied more thoroughly, for instance the 
. The sliding window test proposed by De 

(2006) to evaluate the systematic bias was tested here but images very similar to those 
relevant information 

to perform this study using rather a method based 
LM will also be assessed very soon 

on portal images computed with a patient in the beam, and compared to LASG and IRON. 
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5. Conclusions 
This paper presents a new methodology that combines MC simulations to an efficient denoising 
method which enables the accurate computation of high-resolution MC portal images for 
computational burden compatible with clinical settings and acceptable for TPS. The Siemens 
OptiVue1000 EPID was first accurately simulated using the MC code PENELOPE. One objective of this 
work was to identify a denoising algorithm adapted to the specific requirements of portal image 
denoising, i.e able to deal with a huge number of variables (a highly pixelized image), and also able to 
denoise potentially very noisy images, presenting a non Gaussian noise with a variable amplitude 
depending on the localization of the pixel. A new denoising method based on a nonparametric 
Bayesian framework and called DPGLM, was compared in terms of smoothing capabilities and 
computing time with two standard denoising algorithms, namely IRON and LASG. DPGLM 
outperformed both IRON and LASG by providing smoother images and allowing the smoothing of 
portal images with a RMS pixel noise of 5% at most, in all tested configurations. Interesting features 
of the DPGLM algorithm were thus demonstrated in this work regarding to 2D dose denoising. Future 
work will involve thorough assessment of the systematic bias introduced by DPGLM, optimization of 
the algorithm to even further shorten denoising computing time, assessment of its robustness for portal 
images computed with a patient in the beam, and its generalization for 3D dose denoising. 
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Appendix A. DPGLM Gibbs sampler 
In order to express all steps of the sampling procedure, we first give a generative prior model for the 
DPM parameters. Definitions of probability density functions are given in Appendix B. 
 4�, 4�, …	~	Beta�1, *� let	
� = 4�, 
� = 4��1 − 4��,… E��, E��, …~	JD`�, Ha�� I E��, E��, …~	JD`�, Ha�� I F��7�, F��7�, …~	Gamma�de�, fe�� F��7�, F��7�, …~	Gamma�de�, fe�� G�, G�, …~	JDgh , ΓhI H�7�, H�7�, …~	Gamma�dij , fij� let	@� = �E��, E��, F��, F��, G�, H���, 	@� = �E��, E��, F��, F��, G�, H���,…	 

 
This generative model is fully equivalent to the prior probability density ��
�, 
�, … , @�, 	@�, … �, and 
corresponds to the DP prior for the random measure  &�⋅� = ∑ 
. 	/01�⋅� ∼ DP�*, &+�2.3� . 

 
Given the DPM parameters, we complete the description by a generative model for the observed 

data ����, ���, ���. We introduce the latent classification variables k�, defined for � = 1,… , �, such that k� = A if ����, ���, ��� is distributed from the ABC component of the mixture ����, ��, ��. 
For all � ≤ �, 

k�|	
�, 
�, … ∼ -
. 	/.�⋅�2
.3�  

���, ���|k�,m	@�, 	@�, … ∼ 	JD���|	E�no , F�noI	JD���|	E�no , F�noI ��|	k� , ���, ���, 	@�, 	@�, … ∼ JD��|	GnoL ⋅ MNno����, ����, Hno� I 
 
This generative model is fully equivalent to the likelihood ��k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �R|	
�, 
�, … , @�, 	@�, … � 
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From these probability distributions and using Bayes rule, we want to compute the conditional 
probability density ��
�, 
�, … , @�, 	@�, … |	k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �R� 
 
This is achieved thanks to a Gibbs sampler which, at iteration �U� of the algorithm, successively draws 
samples from, for all A, F�.|	E�., k�, … , kR, ���, … , ��R F�.|	E�., k�, … , kR, ���, … , ��R E�.|	F�., k�, … , kR, ���, … , ��R E�.|	F�., k�, … , kR, ���, … , ��R G.|	E�., E�. , F�., F�., H.�, k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �R H.�|	E�., E�. , F�. , F�. , G. , k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �R 
�, 
�, … |	k�, … , kR 
And for all � ≤ �, k�|���, ���, �� , E��, E��, … , E��, E��, … , F��, F��, … , F��, F��, … , G�, G�, … , H��, H��, …	 
 
The nonparametric behavior of the method is characterized by a potentially infinite collection of 
parameters 
. and @.. This computational difficulty can be tackled by truncation of the DP at a 
predefined huge number of components (Ishwaran and James 2001). We suggest here another 
approach (Kalli et al. 2011). This latter method introduces auxiliary variables ?�	which allow sampling 
only a finite random number T of components at iteration �U� while avoiding any hard truncation of 
the model. We are now ready to describe all steps of the algorithm. 
• Initialize at random. 

- Sample for 1 ≤ � ≤ �, ?�~Uniform�0, 1 �⁄ �, and set ?∗ = min>�x?�y� 
- Sample 4�~Beta�1, *�. Set 
� = 4� and  z� = 1 − 4�. 
- For A > 1, generate 4.~Beta�1, *�, set 
. = 4.	z.7�, set z. = z.7��1 − 4.�, until z. < ?∗. 
- Set to T∗ the maximum value of A. 
- Sample @. for  1 ≤ A ≤ T∗, following prior distributions. 
 

For iteration 	U = 1,… , V, 
• Sample Dk�|���, ���, �� , E��, … , E�}∗ , E��, … , E�}∗ , F�}∗ , … , F�}∗ , F�}∗ , … , F�}∗ , G�, … , G}∗ , H��, … , H}∗� I 

for � ≤ �. 
- Compute for 1 ≤ A ≤ T∗,  
- ~. =1�
. > ?��	max�
. , 1 �⁄ �	J����|E�., F�.�	J����|E�. , F�.�	JD��KG.L ⋅ MN.����, ����, H.�I 

where 1��� is the indicator function : 1��� = 1 if � is true and 1��� = 0 otherwise. 

- Generate k�~	 �∑ �1�∗1�� ∑ ~.	/.�k��}∗.3�  

• Reorder components labels following their order of appearance when generating k�. Set to TR the 
number of distinct k�. Set, for all A ≤ TR, �. = #xk� = Ay, the number of data assigned to 
component A. 

• Sample�
�, 
�… , ?�, … , ?R|	k�, … , kR�	 
-  Sample D
�, 
�, … , 
}� , z}�I ∼ DirichletD��, ��, … , �}� , *I 
-  Sample for � ≤ �, ?�~UniformD0,min�
., 1 �⁄ �I 
-  Set ?∗ = min>�x?�y� 
-  For A > TR, generate 4.~Beta�1, *�, set 
. = 4.	z.7�, set z. = z.7��1 − 4.�, until z. < ?∗. 
- Set T∗ to the maximum value of A. 

• Sample �F�.|	E�., k�, … , kR, ���, … , ��R� for A ≤ T∗, 
F�.7�~Gamma�de� + �.2 , fe� + 12 - ���� − E�.��x�:	no3.	y

� 

• Sample �F�.|	E�., k�, … , kR, ���, … , ��R� for A ≤ T∗, 
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F�.7�~Gamma�de� + �.2 , fe� + 12 - ���� − E�.��x�:	no3.y	
� 

• Sample �E�.|	F�., k�, … , kR, ���, … , ��R� for A ≤ T∗, 
 

E�.~J�Ha�� 	D∑ ���x�:	no3.y I + `a�	F�.�.	Ha�� + F�. , Ha�� 	F�.�.	Ha�� + F�.� 

• Sample �E�.|	F�., k�, … , kR, ���, … , ��R� for A ≤ T∗, 
 

E�.~J�Ha�� 	D∑ ���x�:	no3.y I + `a�	F�.�. 	Ha�� + F�. , Ha�� 	F�.�.	Ha�� + F�.� 

• Sample DG.|	E�., E�. , F�. , F�., H.�, k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �RI for A ≤ T∗, 
- Set 

Γh1 = �∑ MN.����, ����L ⋅ MN.����, ����x�:	no3.y H.� + Γh7��7� 

- Set 

Mh1 = Γh1 ⋅ �∑ MN.����, ����	��x�:	no3.y H.� + Γh7� ⋅ gh� 

- Sample G. ∼ JDMh1 , Γh1I 
 

• Sample DH.�|	E�., E�., F�., F�. , G. , k�, … , kR, ���, ���, … , ��R, ��R, ��, … , �RI for A ≤ T∗, 
H.7�~Gamma�dij + �.2 , fij + 12 - ��� − G.L ⋅ MN.����, ������x�:	no3.	y

� 

 
• Compute at iteration �U� for any chosen ���, ���, 

 	���, ����B� = "��|�� = - 
. 	J���|E�. , F�.�	J���|E�. , F�.�∑ 
8283� J���|E�8 , F�8�	J���|E�8 , F�8�	G.L ⋅ MN.���, ���
2
.3�  

The smoothed EPID image may or may not share the same grid as initial MC data since one can 
choose any point ���, ��� of interest. In particular, it is easy to interpolate between initial data points. 

 
Then, from all V iterations of the Gibbs sampler, we can compute the dose estimate 

 S	���, ��� ≈ 1V- 	���, ����B�Z
B3�  

In addition, we can also compute the dose posterior standard deviation 

H��	���,�j� ≈ � 1V − 1-� 	���, ����B� −  S	���, �����Z
B3� �

��
 

 
Hyperparameters. 

Note that some hyperparameters can be fixed considering knowledge from MC simulations. Typically, 
the mean of the prior distribution on H.� can be fixed to the mean of variances stored in the EPID’s 
dose data file for pixels allocated to the ABC component. Hyperparameters may either be estimated 
through another level of hierarchy and setting to them vague priors.  As an example, we can put a Gamma��� , ��� prior on the scale parameters fe� and fe� in the distribution of components 
excursions. This choice leads to a Gamma posterior distribution. E.g. 
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fe�~	Gamma��� + TR, �� +- 1F�.
}�
.3� � 

It is also worthwhile to estimate the concentration parameter * of the DP following Escobar and West 
(1995).  
We may also notice that we found efficient to replace the Gaussian prior on regression coefficients G. 
by a so-called empirical Bayes prior based on sampling � locations �����, ����, … , ���� , ����� from J�E�. , , F�.�J�E�. , F�.� and take for ����, … , ���� the nearest value of �� 	corresponding to each 
sampled points. � has to be greater than the length of vector G.. We use then G. ∼ JDMh , ΓhI as prior 
with  	

Γh = �∑ MN.D����, ����IL ⋅ MN.D����, ����I��3� H.� �7� 

Mh = Γh ⋅ �∑ MN.D����, ����I	�����3� H.� � 

 
Expression for the posterior of G. is straightforward. 
 
Appendix B. Reminder on some probability density functions definitions used in DPGLM. 
• Uniform�d, f� distribution, for  d ≤ � ≤ f with f > d. 

�Uniform��,����� = � 1b − a 	if	d ≤ � ≤ f0 if	d > �	or	� > fm 
 
• Beta�d, f� distribution, for  0 ≤ � ≤ 1. 

�Beta��,����� = Γ�d + f�
Γ�d�Γ�f� ��7��1 − ���7� 

Where Γ�d� represents the Gamma function in d. 
 
• Gamma�d, f� distribution, for � ≥ 0, 

�Gamma��,����� = f�
Γ�d� ��7� 7�� 

 
• Multivariate normal (gaussian) distribution J�¡,¢�, for £ ∈ ℝ�, 
 
 	 �J�¡,¢��£� = 1�2¤�� �¥ |¢|� �¥  7���£7¡�′⋅¢¦�⋅�£7¡�	
Where	 |¨|	 stands	 here	 for	 the	 determinant	 of	 matrix	 ¨.	 Note	 that	 this	 definition	 covers	 the	univariate	case	when	¯ = 1. 
 
• Dirichlet�*�, *�, … , *n� distribution for £ = ���, ��, … , �n�′ ∈ ℝn , �� > 0 for 1 ≤ � ≤ k, ∑ ��n7��3+ < 1, �n = 1 − ∑ ��n7��3+  and *� > 0 for 1 ≤ � ≤ k, 
 

�Dirichlet�°�,°j,…,°±��£� = Γ�*� + *� +⋯+ *n�
Γ�*��Γ�*��…Γ�*n� ��°�7���°j7�…�nn7� 
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