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Abstract

This work investigates the possibility of combiniktpnte Carlo (MC) simulations to
a denoising algorithm for the accurate predictibm@ges acquired using amorphous
silicon (a-Si) electronic portal imaging device$(Bs). An accurate MC model of the
Siemens OptiVuel000 EPID was first developed udie@ENELOPECOde, integrating

a non-uniform backscatter modelling. Two alreadigting denoising algorithms were
then applied on simulated portal images, namely itbaative reduction of noise
(IRON) method and the locally adaptive Savitzky-&0(LASG) method. A third
denoising method, based on a nonparametric Bayé&siarework and called DPGLM
(for Dirichlet Process Generalized Linear Model)svadso developed. Performances
of the IRON, LASG and DPGLM methods, in terms ofosiing capabilities and
computation time, were compared for portal imagasmuted for different values of
the RMS pixel noise (up to 10%) in three differeohfigurations, a heterogeneous
phantom irradiated by a non-conformal 15 x 15 cigitif a conformal beam from a
pelvis treatment plan, and an IMRT beam from a tptestreatment plan. For all
configurations, DPGLM outperforms both IRON and LASy providing better
smoothing performances and demonstrating a betterstness with respect to noise.
Additionally, no parameter tuning is required by@M, which makes the denoising
step very generic and easy to handle for any pioni@ge. Concerning the computation
time, the denoising of 1024 x 1024 images takesitahd 30, 2 h and 5 min using
DPGLM, IRON, and LASG, respectively. This paperwhdhe feasibility to predict
within a few hours and with the same resolutionea$ images accurate portal images,
combining MC simulations with the DPGLM denoisingaithm.

PACS code see http://www.aip.org/pacs 87.10.Rt (Monte Carlo simulations),
87.55.Qr (Quality assurance in radiotherapy), 8F&66Quality assurance equipment),
02.50.-r (Probability theory, stochastic processes)d statistics), 02.60.Ed
(Interpolation; curve fitting).

Submitted to: Physics in Medicine and Biology
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1. Introduction

Over the past several years, the need for patmudic quality assurance (QA) has become
increasingly important, driven by the complexity airrent delivery techniques such as intensity
modulated radiation therapy (IMRT) and intensitydulated arc therapy (IMAT). In this context,
electronic portal imaging devices (EPIDs) have prbto be valuable tools not only for patient
positioning control, but also for dosimetric evdloa of complex treatment plans in IMRT and more
recently in IMAT (McCurdy and Greer 2009, logt al 2010). Many dosimetric verification
approaches using EPIDs were investigated until mmd were presented in detail in a recent
comprehensive review (van Elmgtal 2008). They can be broadly classified into twoups one is
based on the comparison of a predicted fluenceose @t the detector with a portal image acquired
before or during the treatment (McCureyal 2001, van Escht al 2004, Spezi and Lewis 2002, van
Elmptet al 2005), while the other relies on the estimatiothef dose delivered to the patient from the
portal image, using either a backprojection alfgponit(Wendlinget al 2006) or fluence profiles
extracted from the acquired portal images (Stetiaé 2005).

Prediction accuracy is essential to guarantee yighturate QA using EPIDs. Indeed, the high
resolution of current EPIDs (pixel size down to90r8m) allows recording variations in the energy
fluence due to MLC specific effects (inter- andrateaf leakage, rounded leaf end transmission,
tongue-and-groove). The portal image prediction ehathould hence include all these effects so that
the discrepancies between measured and predictagesncould be correctly interpreted. Two
methods were proposed for the portal dose imag#igii@n; one is based on full forward Monte Carlo
(MC) simulation of the image formation process, ebhbffers a high accuracy at the expense of a
large computation time. The kernel convolution metkvas introduced as an alternative to reduce this
computation time. In this method, the predicted gmas calculated by convolving the incident
fluence, either extracted from the treatment plagrsystem (TPS) or calculated by MC simulations,
with EPID dose response kernels. Two kinds of Kermeere used: analytical or parameterized dose
kernels (Van Escht al 2004, Kirkby and Sloboda 2005, Wendlieigal 2006, Van Elmpgt al 2006,
Greeret al 2007, Vialet al 2008, Greeret al 2009), and pre-calculated MC-based dose kernels
(McCurdy et al 2001, Warkentiret al 2003, Steciwet al 2005, Liet al 2006, Chytyk and McCurdy
2006, 2009, Wangt al 2009). As already pointed out (Viat al 2008, Greert al 2009), kernel
convolution methods may reach a high level of @mieai, only if they combine both an accurate
method to derive the energy fluence and an accunatdelling of the EPID dose response kernels.
This latter point is particularly delicate becaudethe complexity of the EPID dose response. The
phosphor scintillation layer contained in currefIBs causes signal blurring, due to optical glare
(Warkentin et al 2003) and scatter within the scintillation layéhis effect could be explicitly
modelled using an additional kernel or simply byréform material layer beneath the imager adding
to the model. The high atomic number of the sdaitdn layer is also responsible for an
oversensitivity to low energy radiation. As a cansgnce, EPIDs exhibit an energy-spectra dependent
response (Schach von Wittenau 2002, Kirkby and&lat?2005) and are very sensitive to all potential
causes of beam energy variations, such as fie &zl beam hardening in the linac head (Sheikh-
Bagheri and Rogers 2002) caused by the beam mieddiieeh as the MLC (Kirat al 2001) and by the
patient or the phantom placed in the beam (JamiyMarhaegen 2007). Backscattered radiation arising
from the support arm of the EPID contributes algoificantly to the signal and should be explicitly
modelled in the kernel. As shown by some authoneétet al 2009, Koet al 2004, Moore and
Siebers 2005, Siebeesal 2004, Wanget al 2009), this backscatter contribution can be noifeum
and has to be taken into account for extended freddelling (Cufflinet al 2010). Even though many
improvements were included in the generation obdasnels these past years to take all these ffect
into account, kernels are usually generated famadd number of irradiation configurations and are
thus not specific. In the work of Waray al (2009), there was an attempt to generate adaptive
based EPID kernels in a more flexible way but they, for instance, not adapted to the prediction of
extended field as they did not model a non-unifbankscatter.

Although computationally intensive, MC simulatiooi$er today the most appropriate and accurate
technique to predict reliably both energy fluencaps and dose to the detector, overcoming the
limitations of convolution methods in modelling different irradiation configurations. Several werk
were devoted to full forward MC prediction of pdritaages (Spezi and Lewis 2002, Cleiral 2003,
Sieberset al 2004, Jarry and Verhaegen 2005, Paetnal 2006, Cufflinet al 2010) using the
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BEAM/DOSXYZ MC codes. When considering the real gbisize of portal images acquired by
current EPIDs, i.e about 0.4 mm, the calculatiorad.5% Root Mean Square (RMS) pixel noise
image would require a computation time estimatetde@bout one month on 96 CPUs and a phase-
space file (PSF) storing about 4 x'4photons, which means a storage space of aboiic3.| order

to balance the trade-off between acceptable cortipntiimes and production of portal images with
meaningful RMS pixel noise, the pixel size in th€ Mimulated image was chosen around 2 mm most
of the time. As a direct consequence, the predictedie is more blurred than the measured one and
effects of rounded leaf ends, tongue-and-grooves,imterleaf transmission could be washed, hence
potentially leading to problems in the interpreiatof errors.

In this study, we propose to explore a new methagiplo predict portal images, based on the
denoising of MC pre-calculated images. The ainpbieampute reference EPID images at the same
resolution as the measured images, while keepingpating times at a reasonable level. The
objectives of this work are hence twofold: (1) tevelop and commission a MC model for the
Siemens Optivuel000 EPID using tReNELOPE code, and (2) to develop a new portal image
prediction method combining MC simulations to ae@hte 2D denoising technique. To this end, we
tested smoothing techniques usually employed imotlagrapy for 3D dose distribution denoising,
namely the IRON method (Iterative Reduction Of MoiEippel and Nusslin 2003) and the locally
adaptive Savitky-Golay filtering or LASG (Kawrako2002), and we assessed their performances in
denoising MC predicted images. A new 2D denoisgxhhique, based on non parametric Bayesian
framework and called DPGLM (for Dirichlet Processr@ralized Linear Model) (Hannahal 2011),
was also developed and was demonstrated to beyarly suited to very noisy images. Denoising
performances of DPGLM were compared to those ofNR&hd LASG in terms of accuracy and
computation time.

2. Materials and methods
2.1.Materials
Experiments were carried out on a Siemens ARTI8Tilear accelerator (linac) (Siemens Medical
Solutions, Erlangen, Germany), operating at 6 M4 aquipped with a 160-ML®. The 160-MLC
features a single focused design that consist$660fldaves, mounted on two leaf banks. They are
arranged in an alternative pattern of upper ancideaves, so that the source-to-collimator distanc
is 460 mm and 452 mm for lower and upper leavespedively. Each leaf is 95 mm thick, with a
projected leaf width of 5 mm at the machine isoeerdnd has a rounded edge in combination with an
S-shaped middle-part, whereas its sides are coehplfat, without any tongue or groove. A new
slanted leaf design replaced the tongue and gregstem to allow complete interdigitation. More
details on the design of the 160-MLC can be foulséwehere (Tacket al 2008, Kliteret al 2011,
Prahet al 2011).
A Siemens OptiVu€" 1000 EPID (Siemens Medical Solutions) is mountedhe linac gantry: it
is an amorphous silicora{Si) flat panel device with an active detectionaacé 41 x 41 cm?, and a
matrix of 1024 x 1024 pixels, each pixel havinggaae pitch of 0.39 mm. It was operated by the
software coherence Therapist Workspace (Siemenscilesolutions). The EPID was positioned with
the surface of the detector at 100 cm from thecsuXo additional buildup was used on the EPID
since this is the standard acquisition configuraftr nonzero gantry angle measurements.
Calibration curves allowing the conversion of MGsddo an acquired portal image intensity were
obtained for a 10 x 10 cm? field at isocenter, dlirig portal images of solid water slabs of différe
thicknesses, with machine dose rate settings oMOGNin™.

2.2.Monte Carlo smulations

2.2.1. Linac head and MLC modelling. MC simulations of the 6 MV photon beam of the
ARTISTE linac were performed using the 2006 relezfsthe EENELOPE code (Salvatt al 2006). A
new version of the main programeNMMAIN was developed in our institute, in which several
conventional variance reduction techniques (selectremsstrahlung splitting, Russian roulette
combined with angular splitting, and rotationalitsiplg) were implemented. This new version is also
parallelized based on the standard MPI messagdnpasderface and can be run on a cluster
consisting of seven machines, each with 12 x 2 P& @rocessors, and twelve machines, each with
24 x 2,26 GHz processors, hence a total of 372 gssmrs. In this work, only the selective
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bremsstrahlung splitting and the Russian roulettelined with angular splitting techniques were
activated for the linac part. The geometry of tiad head was described in detail, based on
information supplied by Siemens. The energy-losefEvaluesW,. and\W,, were set equal to 500 keV
and 10 keV, respectively, and the multiple-scattprparameter<,; and C, to 005, everywhere.
Commissioning of the linac model was performed bgnparing measured and simulated percentage
depth doses (PDD) and lateral dose profiles,gt & and 10 cm for open square fields from 5 x 5 to
30 x 30 cm? at a source-to-surface distance ofctO@Lazaro-Ponthust al 2011). The simulations
reproduced the measurements within 1% for the PBxk within 2% /2 mm for the lateral dose
profiles.

The modelling of the MLC is an important issue atbuld be conducted carefully, since high
resolution EPID images will be simulated. The 160@/geometry (leaf shape and arrangement) was
fully described following the manufacturer's spéztions and using theERGEOM geometry routine
distributed with BNELOPE(Le Loirecet al 2012). An in-house calibration method based onatbek
of Boyer and Li (1997) was developed to predict It positions for all the MLC leaves from the
information reported in the DICOM file (LeafJawPRimh and LeafJawBoundaries). A script was then
written to convert automatically leaf informatiotored in the DICOM file into the geometry file
required by the BNELOPEcode. The movable skin method developed by Break (2009) was also
implemented to speed up calculations within thesjand the MLC. This method can be seen as a
range-rejection technique by means of the geonufipition and presents the advantage of keeping
unchanged the physics, thus preserving the accysemyided by MC simulations. In the MLC
structure, the following parameters were set: eribn-skin regionC; = C, = 0.1, W, = 200 keV W,
= 50 keV, the energy absorption for electrons aasditppns was set to 200 keV, and the energy
absorption for photons was set to 50 keV; in the skgion, the energy absorption of electrons and
positrons was increased to 1 MeV, while keepingotiver parameters unchanged.

In simulations dedicated to the commissioning af #PID model, the PSF used to store the
information about each particle exiting the linaeath was recorded in a plane located 40 cm
downstream from the target, just below the jawswunber of 5 x 1dhistories were simulated: this
represents about 100 million and 1000 million phetstored in the PSFs, necessary to achieve
uncertainties of less than 2% in computing pomahdes of the 5 x5 cm2 and 20 x 20 cm? fields,
respectively.

2.2.2.0ptiVuel000™ EPID modelling. The EPID was also modelled using tRENELOPE
code. The model consists of a sequence of thitsgms described in terms of geometry and materials
according to information provided by Siemens. tunles the main components of the EPID, such the
1 mm-thick copper plate and the phosphor scintilfatscreen (Lanex Fast Back screen, Eastman
Kodak Comp., Rochester, NY), as well as the prifecuit-board materials and the rear housing. As
suggested by Siebegsal (2004), the lateral dimensions of the EPID wetdager in the model than
the current dimensions (51 x 51 cm? instead of 41 xm?) to approximate the materials surrounding
the cassette. Portal images were computed by gctivnenergy deposited in the phosphor layer on a
virtual grid.

To mimic backscattered radiation arising from tearrhousing of the detector and from structures
surrounding the EPID (gantry), and to model aseckas possible this non-uniform backscattering, an
effective representation of the backscattering ammepts was introduced in the model following the
method proposed by Cufflist al (2010). To this end, uniform water-equivalent slai§ varying
thicknesses, ranging from 1 to 70 mm, were addedhdtseam from the initial thirteen-layer model,
and corresponding images were simulated for 10 arttD20 x 20 cm? fields. By comparing profiles
drawn in the inline and crossline directions onidated and acquired images, a non-uniform map of
water-equivalent slabs can be deduced. The ogfiae effect was not explicitly modelled here taut i
included in the additional backscatter layer.

2.2.3. Commissioning of the EPID model

The EPID model was validated against experimeragh dor two irradiation configurations. First,
portal images without any phantom in the beam vemaguired for different jaw defined field sizes
(5x5, 10 x 10, 15 x 15, 20 x 20 and 25 x 25 omi#) the EPID positioned at a 100 cm source-to-
detector distance (SDD). Second, a layered hetaemges phantom, described in figure 1, was placed
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in the beam, its entrance face located at 67.8 rom fthe source. This phantom is made of two
30 x 30 x 5 crhislabs of water equivalent material (1.04 gi)gra 30 x 30 x 2 cislab of CIRS bone
equivalent material (1.8 g/Ginand two 30 x 16 x 8 chslabs of CIRS lung equivalent material (0.3
g/cn?), separated by a 3 cm air gap.

8 cm lung air lung

S cm water

Figure 1. Description of the heterogeneous phantom usedeiecdimmissioning of the EPID model.

For this validation step, the denoising techniquege not already available; hence, portal images
were computed on a 256 x 256 pixel virtual gridxépisize: 1.6 mm) to decrease the simulation
runtime. For both configurations (in-air and witlketphantom in the beam), acquired and simulated
images were compared using a 2% / 2 mm gamma-irid@xthe in-air configuration only, portal
images were also computed without including thekbeatter correction into the model, and gamma-
index values obtained with both EPID models wemmgared.

2.3. Description of EPID image denoising techniques and implementation

In order to denoise simulated portal images, tleesoising techniques were implemented: IRON,
LASG and DPGLM. The principles of the IRON and LA®G&thods are first quickly reminded; the
principles of the newly developed technique DPGlavid the rationale for its development, are also
described in detail below.

2.3.1. Iterative Reduction Of Noise (IRON). The IRON denoising method proposed by Fippel and
Nusslin (2003) relies on the minimization of a@ridn combining two terms: one accounting for the
data adjustment and the other one encouraging lovature. But since the curvature penalty in IRON
is hon-convex, a global minimum solution is not guieed. Another difficulty in the IRON method
lies in the roughness of the non differentiableghign Minimization routines like conjugate gradient
or quasi-Newton methods are known to be non optioraduch non smooth functions.

Initially designed to perform on 3D dose distribmig in radiotherapy, IRON is facing new
challenges in the context of portal image denoisiigh a pixel size of about 2 mm, the algorithmic
difficulties mentioned above tend to be mitigatetts the MC calculated dose images can exhibit a
convenient signal-to-noise ratio (SNR). In thisiatton, the initial point of the optimization, whids
taken to be the MC data, is not “too far” from thesired solution. But this is no longer the casemwh
one wants to maintain the EPID physical pixel 2689 mm) in the MC simulations. The IRON
technique faced here to a much noisier environmemtrder to reach reasonable MC computation
times. Initialization through raw MC data can thiageal the ill-behavior of the minimization routine
and extremely slow convergence to a local minimtihis initialization point dependency may appear
troublesome and this is one of our motivationsrimppsing a new method which allows relaxing this
constraint.

Note that, due to the large amount of variablés=(1024 x 1024 = 10485764), we resorted to
use a limited-memory Broyden, Fletcher, Goldfarbai$ho algorithm (LM-BFGS) (Liu and Nocedal
1989). The purpose of LM-BFGS is to avoid in congpiohns the approximation of the inverse of the
Hessian matrix whose storage siz&Vix N. Instead, this algorithm maintains only the higtof the
m most recent updates (points and gradients) whiehused in place of explicit matrix-vector
products involving the inverse of the Hessian. EBID images denoising, we fixed m = 100. We also
notice that the best performances of the algorittere reached when tuning the trade-off parameter of
IRON original implementatiow = 0.05.
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2.3.2. Locally Adaptative Savitzky-Golay filtering (LASG). The LASG algorithm has gained
popularity in 3D dose denoising since its introdtuttby Kawrakow (2002). The original Savitzky-
Golay smoothing algorithm (Savitzky and Golay 196dlies on a polynomial regression over a
neighbourhood around each data point and retamsiioothed value at the central point. Savitzky
and Golay showed that, once the window has beenedkfthe smoothing algorithm amounts to a
linear filter. The modification proposed by Kawrakallows choosing a window size in order to
optimize the trade-off between smoothing capactied bias reduction. The algorithm starts with an
initial maximum window size which is reduced, follmg a specific strategy, until the satisfactioraof
X2- goodness of fit test. This test is based on #sumption that the noise follows a Gaussian
distribution entirely characterized by the standdediation stored in the simulated dose data file.
Performances of this approach for 3D MC dose denpisere reported in El Naga al (2005) and
contrasted with alternative methods. When applyitASG to EPID simulated data, detector
characteristics have to be considered. First, riied| pixel size and the low detection efficiencduce

a non-gaussian noise distribution which makes stilpap the underlying model of the goodness of
the fit test. Second, the MC estimated standardatdem may become itself highly noisy. These
concerns highlight the particular attention to b&lgo the tuning of th&? ., parameter.

2.3.3 Dirichlet Process Generalized Linear Model (DPGLM). In the statistical interpretation
of the IRON criterion, the curvature penalty casodbe seen as a kind@fior term characterizing our
degree of belief in a smooth dose deposit. ThiseBiay rephrasing of the denoising problem forms
the framework of the proposed approach. A key pofithe Bayesian methods is that they give access
to the estimation uncertainty. Namely, we seektfar whole set of solutions, expressed by their
posterior distribution, instead of looking for a particulame only. We retain for the dose estimate the
posterior mean — which minimizes the L2 risk. Aside-effect, DPGLM is able to propagate the
whole information present in the MC data.

Another characteristic of our approach is its noapetric feature. Since the number of variables
is very large in the EPID MC data denoising problam= 1024 x 1024 pixels), it turns out that it is
convenient to consider the problem as the estimatfca continuous surface R? which amounts to
infer over a potentially infinite number of paraewt, leading to a so-call&hyesian honparametric
regression approach. All statistical material cannot be expegl here and readers are invited to refer
to other references to get an insight into involueethodologies (Mulleet al 1996, Hjortet al 2010,
Hannahet al 2011). In this framework the computed EPID datéx,;, x,;,y;) fori =1,...,n, are
modelled, wherdx,;, x,;) stands for the pixel coordinates aydfor the pixel calculated dose. The
method lies in the estimation 6fx;, x,, y), the joint distribution ofx,, x,, ¥), from simulated points
(x11, X5;,¥;) in @ nonparametric way, and to take for the dextb@osel (x,, x,) for all (x;, x,) € R%:

fR Y. f(x1,%x2,y) dy
fR f(x1,%2,y) dy

d (e x2) = E (s x) = jR Y. fOlexy) dy = 1)

Nonparametrics arise from the choice of a Diricileicess Mixture (DPM) for prior specification
of the joint densityf (x4, x,,y). This model is based on the random distribution

G ~ DP(a’, Go)

where the symbol ¥ means “is distributed as” anP(a, G,) stands for the Dirichlet Process
distribution (Hjortet al 2010) with mean measuég and concentration parameter This distribution
over random probability distributions plays a caehtrole in the nonparametric modeling. An
interpretation of DP by Sethuraman (1994) letsxymess the random measu@é) as

6() = ) wi 8,()
k=1

with wy, = V;, wy = Vi 15211 — V) such that/,~Beta(1,a) (see Appendix B for definitiondnd
6, () stands for the Dirac delta function locateduatHere, 6,~G, represents the parameters
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associated to the®" component of;. Nonparametrics come from the (potentially) irtngum in the
DP prior for G. This leads to the following random densfify,, x5, y)

fx,x2,) = Z Wi fek(xpxz;J’)
k=1

wherefy, stands forkt™ component off (x,, x,,y), parameterized b§,. We now make explicifg,
for the application of DPGLM to EPIDs images deimgs We use the additional notatiofig =

(Mk!l-kugkio-l?) anduy = (U1 2k)s T = (T1ko T2k),
fo, (X1, %2, ) = N (g liage, T1ie) N 2| thar Tare) N (V| B - Kie (21, %2), 0F)

whereV' (- |u, T) represents the normal (gaussian) distribution wiganu and variance, X, (x;, x,)
is a centered regressors vector gpdhe regression coefficient vector. Note that ggression model
for the outcomey given covariategx,,x,) may be chosen as linear (i8,(xy,x,) = (1,x; —
Uik, X2—Hg)" In this case) or polynomial in the DPGLM approa@hg. X, (x;,x;) = (1,x; —
He X2 —Haks (61 — paie) (X2 —Hai), (X1 — p1x)?, (X2 — p12,)?)' for quadratic regression).

The prior measuré&,is taken as follows. Priors for meapsare normal distributions, priors for
variancesr anda? are inverse-gamma, and prior for regression aoefftsp is multivariate normal.
Using Bayes rule, we deduce from the expressigit(of, x,, y) that

Wi NV (x| 1k T1) N (2| ok, T2k)
] 22 Wi N (g g, T1) NV (X2 10, T2y

flxg,x;) = )N(J’|ﬁl’c 'Xk(xpxz)"’lg)

and

wi N (1l T1e) N Ceolbor, T2, o
S Wi N Gelizg 710 N Ceglpig o) P O3
= 2= Wi 1M1 Ty 2121, T21

E()’|x1' xZ) =

The latter expression reveals our prior in the B&e nonparametric approach for the smoothed
EPID image.

Note that heteroscedasticity and non-gaussian miraare handled in the model 6{y|x;, x)
thanks to the mixture of Gaussian distribut®ify|sy, - Xi (x1,x,), o) for observed dosg at anyx.
Another remark is that we may consider a multitariaormal prior forx = (x4, x,) ~ N (x|u, T)
which avoids privileging EPID matrix directions. Bgince jaws and MLC geometries share the same
axes, this oriented prior reveals appealing.

From the elicited prior defined above and détg, x,;, y;), we aim at computing the posterior
distribution £ (xq, X2, Y1X11, X21, V1, -» X1ns X2m, ) @nd  conditional  expectationd (x,x,) =
E(Y|xq, %5, %11, X21, Y1, -» X100 X2m, Yn). The exact computation of the posterior distribtiis
intractable and we use a Markov Chain Monte-Cavi€NIC) approximation scheme (Gibbs sampler)
to draw samples from the target distribution. Irdesrto make inference feasible over infinite
dimensional objects (infinite sum in DP), we follaslice sampler approach from Katlial. (2011),
where only a random finite numbef components are involved per iteration. At eidetation(t) of
the MCMC procedure, we are thus able to samplenaised dose surfaei(x;, x,)®. ForT samples,
the posterior distribution is given by the setddgf,,x,)® for t =1,..,T, and the dose estimate
(posterior mean) is expressed as:

T

R 1

d (a,x) 23 ) d G, 1) ® @
t=1

We can as well compute the posterior standard tiemiar credible intervals from the collection

{d(x1,x2)®P}.
All parameters of the DPM prior distribution ares@lsampled at each iteration, assuming an
additional degree of hierarchy in the dose dataehadd putting vague priors on these parameters.
Algorithm details of the Gibbs sampler are giveppendix A.
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2.4.Assessment of the denoising technique performances

2.4.1. Description of the denoising test cases. Denoising effectiveness of the three algorithms
presented above was assessed on the two folloeshgases.

In the first test case, portal images correspontbripe irradiation of the heterogeneous phantoth wi
a squared 15 x 15 cm? field were computed usingctimemissioned EPID model. A virtual grid of
1024 x 1024 pixels, such as the physical detectiatrix of the OptiVuel000 EPID, was considered
in the simulation. Monte Carlo simulations of 5@0]1 500, 1000, 1700, 3000 and 5000 million
photons were performed, resulting in computed pamages with associated statistical uncertainties
on the maximum dose of 15, 10, 5, 3.5, 2, 1.8 afiflo1 A splitting factor of 10 was used to recycle
the particles stored in the PSFs for the portagenzalculation.

Simulated portal images were then denoised witHRi@@N, LASG and DPGLM algorithms. Due
to computation time limitations linked to EPID M@lculations, the choice of a common reference
image remains a tricky issue since the image withdmallest RMS pixel noise (1.6%) is still too
noisy to be taken as the reference. In order tadsatay bias in the comparison, we then resortagsé
a reference image for each denoising method, nathelimage with 1.6% RMS pixel noise denoised
with the algorithm under test. The reference far tiw MC image evaluation is the 1.6% RMS pixel
noise MC image itself.

The goal of the second test case is to challengébéihavior of the denoising algorithms even
further. For this, a ‘picket fence’ field with afteating leaves open and closed was set on the, linac
resulting in many steep dose gradient regions. gdr&al image was acquired by irradiating directly
the EPID located at 140 cm from the source. Twdgbamages were simulated using a virtual grid of
1024 x 1024 pixels: one with a high RMS pixel npisderred as ‘low SNR’ image in the following
(PSF storing about 4.5 x 1@hotons and recycled ten times) and the other aitbw RMS pixel
noise, referred as ‘high SNR’ in the following (PStering about 3 x f0photons and recycled ten
times). Once the portal images simulated, they vdergised with the IRON, LASG and DPGLM
algorithms, and compared to the acquired image.

2.4.2. Assessment criteria. For the first test case described above, the pmdoces of each
denoising algorithm were assessed not only in tesfnaccuracy but also in terms of computation
time. Regarding to accuracy, two criteria were abered:

» the visual inspection of profiles drawn throughtpbmmages: this qualitative criterion is based on
a subjective appreciation but it can help to appteche smoothness added by each denoising
method,

» the 1% dose difference test proposed by FippelNiigslin (2003), which is a modified and more
severe version of the x% / y mm test (Van Dykelet293). It consists here in calculating the
fraction of pixels presenting a difference of mtran 1% of the maximum normalized dose with
respect to the reference image, in a 600 x 600 pewral area of the image.

The efficiency of the method combining MC simulascand denoising was also assessed in terms
of computation time. This issue is crucial becawseshould know if it is rather spending CPU time
for smoothing or for simulating additional partidiestories. In other words, this should help therus
to determine the optimal trade-off between companaime and accuracy (or statistical uncertainty i
the smoothed portal image). To this end, the 1% mihce test was also expressed with respect to the
total computation time necessary to the portal inaglculation, equal to the time spent for the MC
simulations plus the time spent for smoothing.

For the ‘picket fence’ test, profiles were drawrotigh the acquired portal image and the denoised
simulated images, along the direction perpendicidahe leaf motion and on the central axis. They
were then compared.

2.5. Application to clinical treatment plans
The developed methodology for portal image preolictivas tested with two clinical examples that
involve different types of fields.

A pelvis treatment plan using conformal beams fira$s considered. In this case, the irradiation
field is large. The EPID was located at 100 cm ftbesource and it was irradiated directly. Onlg on
of the beams was simulated witlENELOPE The portal image associated to this beam was then
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simulated: the image contained 1024 x 1024 pixedstae number of primary particles was chosen so
that the image was simulated with a RMS pixel naig&%, 5.7% and 10% of the maximal dose,
which represents in the three cases an accept@ife f®m the point of view of denoising. For
statistical uncertainties of 3% and 5.7%, the PS&dustored about 2.3 xglf)hotons, and it was
recycled ten times for the first, and only oncetfa second. For a RMS pixel noise of 10%, the PSF
used stored about 7.1 x®1@hotons, and was played once. The quantitativduatian of the
performances of IRON, LASG and DPGLM was done bigwating the gamma index between the
experimental image and the denoised image for tatisical uncertainties, with a 2% /2.5 mm
criteria.

A prostate IMRT clinical plan was chosen as a sdcoase. This plan was optimized and
calculated on Konrad (Siemens Medical Systems)camdained five fields equiangularly distributed,
with step-and-shoot delivery of tiny segments. EfR#D was located at 140 cm from the source and it
was irradiated directly. Only one field (field 2)ade of nine segments was simulated. For each
segment, a PSF was computed so that the RMS s m the resulting simulated portal image was
no more than 5%. Each PSF thus contains about liBrmaiof photons recycled 20 times. Here again,
portal images were simulated on a 1024 x 1024 aliryrid. All simulated portal images were
denoised with IRON, LASG and DPGLM, for comparisdime gamma analysis was performed for
each individual segment before considering the whobdulated beam. This latter was computed
following two ways: first, each simulated image wamsoothed then weighted by the corresponding
MU retrieved from the TPS and the resulting weighteages for all segments are added together. In
a second test, each simulated image was first wesigbefore adding the images for all segments, and
the smoothing is performed at the end on the finatlulated image. This test was done in order to
check if smoothing must be done on individual segser only on the final modulated image.
Gamma criteria of 2% (of maximum dose) and 2.5 mrdistance were considered for the pixels in
the image for which the value is greater than 20% e maximum dose.

3. Results

3.1. Commissioning of the EPID model

The model for the Optivuel1000 EPID that best matahgerimental data includes two kinds of non-
uniform layers of water-equivalent material benetith 13 layer model: a 50 mm water layer of
16 x 33 cm?, centered in (x=0 cm, y=-4 cm) (thexX¥saefers to the inline direction) and anywhere
else a 30 mm water layer. Profiles drawn througjuaed and simulated images in the crossline and
inline directions are presented on figure 2, fort@loimages without phantom in the beam. Profiles
obtained in the crossline direction for the poimahges with the heterogeneous phantom in the beam
are shown in figure 3. 2D gamma-index values fanma criteria of 2% / 2 mm are also given in
table 1. These results demonstrate the need tad@ch correction for backscatter radiation in the
model to accurately predict portal, especially ltoge field sizes. They also validate the accuracy
our model for a wide range of field sizes and fifiedent irradiation configurations, with and withio
phantom in the beam.
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Figure 2. Profiles for acquired (blue line) and simulatedi(ceosses) portal images in the crossline
(left) and inline (right) directions, for the cogfiration without phantom in the beam.
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Figure 3. Profiles for acquired (blue line) and simulatedi(ceosses) portal images in the crossline
direction, for the configuration with the heterogens phantom in the beam.

Table 1.Comparison of gamma-index values obtained for tfierdnt configurations.

Images without phantom Images with phantom

Field size Without With With

(cm?) backscatter correction backscatter correction backscatter correction
5x5 99.4% 99.4% 99.4%

10 x 10 95.0% 98.4% 98.1%

15x 15 88.3% 97.4% 97.5%

20 x 20 57.2% 95.4% 96.1%

25 x 25 24.6% 93.1% 95.0%

3.2.  Denoising of portal images

3.2.1. Denoising test case: heter ogeneous phantom. Figure 4 summarizes the fraction of pixels
which fail the 1% difference dose criterion. In akses, the interest of using any of the tested
denoising algorithms is evident, even for MC imagéth a high SNR. IRON, LASG, and DPGLM
exhibit similar performances for images with a RMi&el noise better than 2%. For images with
higher RMS pixel noise, the statistical basis ofd® offers more robustness with respect to noise.
Indeed, MC images computed with 5% RMS pixel naigeld be denoised correctly using DPGLM,
as proved by the 2% fraction of pixels failing tt# difference dose criterion. The LASG and IRON
algorithms would require much less noisy MC presgkted images, of about 2% and 3.5% for IRON
and LASG, respectively in order to reach the saeselt. We also observe on the profiles shown in
figure 5 that DPGLM produces smoother images tHR@N and LASG while preserving well the
edges in the high-gradient dose regions. Thesétselemonstrate that it is possible to reach amgema
quality compatible with a clinical interpretatiorsing DPGLM for PSFs that store between 100
million (10% RMS pixel noise) and 500 million phato (5% RMS pixel noise). Obtaining the same
image quality using LASG would require a PSF twoes larger. With IRON, a PSF three times
larger would be necessary. Also let notice thatrkg5 exhibits the unstable behavior of LASG
algorithm in high noise context. Indeed, LASG intdis size adaptation scheme may lead to a zero
length smoothing window. This situation arises @snsas no window size configuration can satisfy
the X2- goodness of fit test. As a consequence, thesgetkldata points remain unsmoothed and
appear as outliers in the resulting image. Thisvdeek has been pointed out by authors in Kawrakow
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(2002). In order to mitigate this effect, they sesfyto generate several MC batches and to use a
weighted average as smoothed estimate owing ttotherobability to observe outliers on the same
pixel for different batches. Nevertheless, for gdi®1D images this probability reveals not negligib

RMS pixel noise in the simulated image (%)
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Figure 4. Fraction of pixels failing the 1% difference test MC raw images (cyan), images denoised
with IRON (green), LASG (blue) and DPGLM (red).
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Figure 5. Central profiles drawn through the reference im@dudgck), the MC raw image (cyan), the
image denoised using IRON (green), LASG (blue) BRGLM (red), for the 100 million photon PSF.

Concerning computation times, we experienced slomvergence for the IRON algorithm for low
SNR images, as expected. Despite the needs ofisami computing requirements, the structure of
DPGLM algorithm makes it suitable for parallelizati contrary to the LM-BFGS optimization
algorithm used for IRON. As a consequence, thectiffe computation times are similar for DPGLM
and IRON. The MC computation of the 1024 x 1024usated image on 100 processors (2.26 GHz)
of our Linux cluster lasts in 30 minutes when rungnbver 100 million photons from the PSF and
2 h 30 min when running 500 million photons. In #ame configurations, denoising on 1024 x 1024
images necessitated about 1 h 30 min, 2 h, anchiusing DPGLM, IRON, and LASG, respectively.
The complete computation of the portal image usR@N took thus 2 h 30 min and 4 h 30 min for
100 and 500 million photons, respectively. Using3DR/, it took 2 h and 4 h for 100 and 500 million
photons, respectively. Using LASG, it took 881 and 2 h 35 min for 100 and 500 million photons,
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respectively. Figure 6 shows the fraction of pixalting the 1% difference dose criterion test with
respect to the global computation time of the pamage.
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Figure 6. Fraction of pixels failing the 1% difference test MC raw images (cyan), images

denoised with IRON (green), LASG (blue) and DPGL#) with respect to the global computation
time.

Although LASG was the fastest algorithm for denujsiwe nevertheless observed an optimum in
terms of accuracy and computing time for DPGLM tloa portal image simulated with a RMS pixel
noise of 5%. This denoising test case also helgad define a range of RMS pixel noise values & th
MC simulated image for which the denoising techeijwcould be applied relevantly. Hence, we
noticed that IRON performed well for a RMS pixelis® ©) smaller than 2 or 3%, LASG far
smaller than 3.5%, and DPGLM forof 10% at most. That is why, in the following, tarimages
were then simulated with@of no more than 10%.

3.2.2. Denoising test case: picket fence field. Figure 7 shows the comparison between the
profile drawn through the experimentally acquirethge and through the simulated images for the
two RMS pixel noise values considered here. Thesealts show that DPGLM performs equally in
denoising the high and low RMS pixel noise simuldteages. The percentage difference between the
experimental profile and the simulated profilesased with DPGLM are within 2% or within 2 mm

in the region of steep dose gradient. This exceligreement validates the reliability of the partarse
used in our MLC model (leaf-end radius, leaf widthd leaf side design), and ensures that the MLC
leaf positions are well reproduced. As alreadyasatiabove for the first test case, profiles dembise
using DPGLM are smoother than those denoised UR@N or LASG (withX2,, = 1.7), for the
high RMS pixel noise image. For the low RMS pixeise image, both IRON and LASG produce
many outliers, giving here again a good examplidefeffects caused by the unstable behvior of both
algorithms in high noise context. By tuning th& ., value to 10 for the LASG algorithm, the
simulated images, including the one with high RM£epnoise, seemed to be better smoothed; but
this is at the expense of the signal amplitudectvis no more correctly reproduced.
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Figure 7. Profiles drawn through the experimental imageagk) and the MC raw image (grey
squares) simulated for a high SNR value (top lefti) a low SNR value (top right). Profiles through
images denoised with DPGLM (middle left), IRON (uhiel right), LASG withX2,, = 1.7 (bottom
left) and LASG withX'2,, = 10 (bottom right) are also compared to the experialeptofile (in
black), for the high SNR value (in red) and the IBWNR value (in blue).

3.2.3. Pelvistreatment plan.  Figure 8 shows the acquired portal image for tHeipé&reatment plan
(figure 8a) as well as details in a zoomed areéineat in yellow in image (a). In this outlined ayea
simulated images obtained for a RMS pixel noise3#f, 5.7% and 10% before smoothing (first
column), after smoothing with DPGLM (second columiON (third column), and LASG (last
column) are also shown.

Images smoothed with IRON looked particularly gyain the irradiation field: this effect became
more pronounced as the RMS pixel noise in the gitedlimage increased. LASG gave images with a
better quality than IRON, although some spikes @¢dad observed. The amplitude and frequency of
these spikes became more important as the simulatage became noisy. For all the statistical
uncertainties considered here, DPGLM outperformB®ON and LASG by providing smoother
images. However, for the = 10% case, it can be seen that details in thie-dpigdient dose region
were significantly altered compared to results ioleté foro = 3% or 5.7% on all smoothed images. In
this case, the level of noise was too high to alotaithful reproduction of the details in the irrag
towards the field edges. These results suggestatbtiel MC portal images with a RMS pixel noise
smaller than 5% for conformal and IMRT beams.
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Figure 8. (a) Acquired portal image for the pelvis treatmieeam and (b) zoom in the area outlined in
yellow in (a). In this outlined area, simulated gaa obtained without denoising with a RMS pixel
noise of 3%, 5.7% and 10% (d, h and ), using tR&DM method (e, i and m), the IRON method (f, |
and n) and the LASG method (g, k and 0).

For the different simulated statistics, the prafileere drawn in the unsmoothed MC image and in
images smoothed with DPGLM, IRON and LASG, along thite line represented in figuga. The
comparison of profiles is shown in figuée Spikes caused by the LASG algorithm can alsoldsly
visible on the profiles and they are particulanypbrtant foro = 5.7% or 10%. For alb values,
DPGLM produced smoother profiles than IRON and LAS&d reproduced very well the
experimental profile.
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Figure 9. Profiles drawn through the acquired image (blachéd line), the MC image undenoised
(cyan crosses), the MC image denoised with IRON€L), LASG (blue) and DPGLM (red), for three
different statistical uncertainties in the simuthimage.

Table 2 gives the results of the gamma analysi®imeed on MC images computed for the three
different statistical uncertainties and denoiseidgu$RON, LASG and DPGLM. Foo = 3%, LASG
and IRON performed equally well, but a little bibkge than DPGLM that gave excellent results.
IRON showed limitations whern becomes 5.7%, to the contrary, LASG and DPGLM tadied
their smoothing capabilities very well. &t= 10%, only DPGLM managed to smooth correctly the
image. These results stressed the expected behddgoulRON, which is at its most successful when
images are moderately noisy, i.e fosmaller than 3%.
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Table 2.Percentage of pixels passing gamma criteria of 2% fnm for the simulated images
calculated for three different statistical uncentigis, and smoothed with DPGLM, IRON and

LASG.
RMS pixel noise DPGLM IRON LASG (X2, = 1.7)
0=3% 97.2 94.4 93.5
0=57% 96.5 88.4 94.0
0=10% 95.7 46.8 83.0

Dealing with computation time, the simulation b&tportal images for RMS pixel noise of 5.7%
and 10% took 40 minutes and 14 minutes on 72 psocgsrespectively. Denoising times are fixed by
the size of the image to be denoised, and aredfual to those obtained in section 3.2.1,i.e 0h 3
min, 2 h and 5 min using DPGLM, IRON, and LASG,pedively. The overall time required to
predict portal images far = 5.7% was thus of 2 h 10 min, 2 h 40 min and 4%for DPGLM, IRON,
and LASG, respectively.

3.2.4. IMRT prostate treatment plan.  Results of the gamma analysis are summarized la 8&lbrhe
gamma analysis performed on each segment inditydshAbwed that 95.2% of points in average
passed the chosen gamma criteria for DPGLM, 73 @24RON and 89.3% for LASG. Low values
obtained for IRON could be explained by the higheleof noise still present in the image after
smoothing, in particular within the irradiation Itie The spikes caused by the use of LASG also
penalized the gamma value. Here again, DPGLM pritgeability to smooth simulated images with a
RMS pixel noise of about 5%.

Table 3.Percentage of pixels passing gamma criteria of 2% fnm for the simulated images
smoothed with DPGLM, IRON, and LASG.

Segment DPGLM IRON LASG (X2, = 1.7)
1 97.1 72.4 91.3

2 97.0 70.8 91.2

3 96.0 67.2 89.0

4 95.0 67.3 87.3

5 94.3 69.6 87.3

6 96.7 68.5 87.9

7 97.1 75.4 90.3

8 90.7 80.4 88.8

9 93.3 88.7 90.4

All segments smoothed 97.8 77.2 92.4
individually, then summed

All segments summed, then final 98.2 81.0 80.0 (€2, = 1.7)
image smoothed 94.6 (CAq = 10)

With DPGLM and IRON, very similar results were aibied when either smoothing first each
segment individually or smoothing the final imadgatained after summing all segments. We could
also notice that the gamma-index value calculatedhfe whole beam is a little bit better than value
taken individually for each segment, showing anragmg effect which tends to decrease dose
gradients in the summed image. This effect couldtmerved also for IRON and LASG. For LASG,
we noticed poor results in smoothing after sumnaithgegments if we keel§2,, = 1.7. This is due
to the correlations between the MC data of eacmeay Indeed, a common PSF recorded after the
jaws was used for computing each segment. In #8e,dhe variance of the sum is far greater than th
sum of the variances and we had to incre¥de, value to 10 in order to get better performances.
Varying the X2, value from 1.7 to 10, the percentage of pixelssipasthe 2% / 2.5 mm criteria
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increased from 80.0% to 94.6%, almost reachingsttime performances as DPGLM. It is likely that
this inter-segments correlation phenomenon migs affect the IRON performances when working
on the sum of segments since computed noise vatewlso used in this methothese results
showed that an accurate prediction of the portalgenfor a modulated beam is possible by smoothing
only the final modulated image rather than eachmsey individually, which contributes to save time
during the smoothing step of the prediction aldponit

The simulation of the portal image for one segneok about 15 minutes on 72 processors. Added
to the computation time devoted to smoothing, therall time for the portal image prediction of a
segment was thus of 1 h 45 min, 2 h 15 min and 20fon DPGLM, IRON, and LASG, respectively,
if the image is smoothed once after summationlsfegments.

4. Discussion

The present study is, to our knowledge, the fitatlyg that proves that theeERELOPE MC code is
suitable for the prediction of accurate portal iemgAs already shown by other authors on the Varian
aS500 EPID (Cuffliret al 2010), a non-uniform backscatter model had tonbegrated within the MC
model in order to take into account for backscattemdiation arising from components that surround
the EPID cassette, from the arm that supports tREDEand also from the gantry. An accurate
backscatter modelling is mandatory in order to ensan accurate prediction of portal images, in
particular for large field sizes.

Regarding the denoising part of this work, we hsivewn the feasibility of the approach based on
the combination of a smoothing technique with M@wdations to predict portal images with the same
resolution, and potentially with the same accurasyexperimental imageblsing MC simulations
alone, this objective could not have been reachedid the intensive computational resources theat ar
required. Performances of three denoising algosthmere evaluated in this context, in terms of
accuracy and computation time. Results obtainedhi®iRON algorithm confirmed that IRON is not
suitable for denoising problems characterized lwige number of variables, i.e pixels in the image,
but much more relevant in denoising 3D dose distitims where less and far biggeyxels are used.
Better performances for IRON might have been olekifywe had applied it on smaller images, for
instance a portion of the 1024 x 1024 portal ima#geexpected, IRON was also shown to be heavily
hindered when very noisy images were considered iavadas unable to smooth portal images
simulated with a RMS pixel noise higher than 3%oltder to facilitate the convergence of IRON, a
proposed alternative could be to initialize IRONttwan image already denoised, for instance the
image smoothed by LASG since it is the fastestlagha algorithms tested here.

Good results could be obtained with LASG only ié thi2 ., parameter was tuned in order to
balance the trade-off between introduced bias amobthing capabilities. If théC2,, value is too
high, steep dose gradients are too smoothed anchtieh more bias is introduced; otherwise, if the
X2, value initially proposed in Kawrakowt al (2002) was kept, smoothing is not optimal. The
tuning of theX’2,, should be done in a trial-and-error process, &mheconfiguration, which could be
cumbersome and time consuming, and finally not eaient in practice. As noticed in Kawrakaiv
al (2002), some pixels are not denoised at all by GAsid appear as outliers on the smoothed image.
This issue might be mitigated by working on sevéatiches. But the non gaussianity of the noise is
increased by working with smaller PSF. This cadl l@areinforce the non optimal behaviour of LASG
in this situation.

For all the configurations studied in this work, ®EM outperformed LASG and IRON by
producing smoother images and being able to sneteliantly images characterized by a RMS pixel
noise smaller than 5%. Moreover, to the contranlLABG and IRON, DPGLM requires neither
parameter adjustment nor knowledge about the \aiahthe noise associated to each pixel, making
this denoising method more generic than LASG. Bd¢hse of the IMRT beam where portal images
for each segment are summed, DPGLM is less semshian LASG or IRON to errors caused by the
inter-segment correlations due to the use of a comRSF to compute each segment. The tuning of
both IRON and LASG algorithms also reflects thislgem and should be revised specifically in order
to take it into account. One possible alternatiweld be to compute one independent PSF per segment
in order to decrease such correlations.

The overall computation time for the predictiontleé portal image corresponds in our method to
the sum of the time spent for the MC simulation &émeltime spent for smoothing. It is well known
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that the MC simulation time depends higlon the irradiation field size, and it was sin to vary
from 2 h 30 min for a 15 &5 cm2 field to about 10 min (on 100 processorspfemall IMRT beaml
(for a RMS pixel noisef 5% in the simulated ima). Considering smoothing time alone, LASG is
far the fastest algorithm compared to othechniques, when implemented on the same hard
resources and with identical parallelizatiefforts, i.e. hybrid parallelizetn MPI/OpenMP in ou
case However, when considering also tlsmoothing capabilitiesDPGLM reveals interestir
performances andllows simulating a portal image wia similarquality than using LAS(but with a
PSF storing twice fewer particleWorking with smaller PSF, DPGLM offers hence thegibility to
save disk storage compared to LASG, which mightaeattractive It should also be noticed that
contrast with LASG or IRON, DPGLM outputs are exgzed as functions (as mentioned in sec
2.2.3) and not as matrix values taken cafixed input data grid. It is thus possi with DPGLM to
compute the denoised doakany portal plane coordinates whether belongintpé iniial simulated
data grid or not. This feature may offer some aolditl flexibility in tuning the trac-off between
image resolution andgmoothinc time. Indeed, since DPGLM smoothing time is aximately
proportional to the number of input points, we sawe time by using a coarser input grid for a
with moderate dose gradients.d. ou-of-field regions),reducing then the number of data for th
regions. Furthermore, it seems reasonablsystematically try to use the coarsest input gridctv
does not entail bias in the denoised image compatdete desired output resolution using DPG
interpolation capabilities.

To conclude, DPGLM reveals very interesting demgspropertieson 2D potal images. Some
features of the propos&@PGLM method have not been fully investigaiadhis work. Among them,
akey feature of the approach lies in the uncerta@stymation over the whole image. This could b
enhanced information which can hel| practical situations to determine credible inteswadntaining
the desired dose imagghis could also help in the assessment of the dampmethod since here
reference image could not be determined easilytavery largecomputational resources requirec
order to do soAn example is given in figurl0 where it is showed that credible intervals may
assessed and that they contain the expected tseevetue
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Figure 10. Results obtained for tt100 million photon derising test case P< The3o-
uncertainty interval computed with DPGLM (red bargdplotted round the DPGLM mean dc
estimate (red) and compared to reference dosdgw¢filack) Raw data are representedcyan dots.

Additionally, DPGLM performanc needsto be studied more thoroughly, for instance
systematic bias introduced by DPGLM in denoisedgis. The sliding window test proposed by
Smedtet al (2006) to evaluate the systematic bias was testeel but images very similar to thc
obtaired with the gamma analysis were obtained, yieldnagadditional relevant information
regarding to the systematic biagaluatiol.. We planto perform this study using rather a met based
on data replications in the futurginally, the performan: of DPGQ.M will also be assessed very sc
on portal images computed with a patient in theheand compared to LASG and IRC
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5. Conclusions

This paper presents a new methodology that combih@ssimulations to an efficient denoising
method which enables the accurate computation gh-tesolution MC portal images for
computational burden compatible with clinical s&i8 and acceptable for TPS. The Siemens
OptiVuel000 EPID was first accurately simulatedhggshe MC cod®ENELOPE One objective of this
work was to identify a denoising algorithm adaptedthe specific requirements of portal image
denoising, i.e able to deal with a huge numberapiables (a highly pixelized image), and also a@ble
denoise potentially very noisy images, presentingoa Gaussian noise with a variable amplitude
depending on the localization of the pixel. A neendising method based on a nonparametric
Bayesian framework and called DPGLM, was comparederms of smoothing capabilities and
computing time with two standard denoising algarith namely IRON and LASG. DPGLM
outperformed both IRON and LASG by providing sma&stimages and allowing the smoothing of
portal images with a RMS pixel noise of 5% at mastll tested configurations. Interesting features
of the DPGLM algorithm were thus demonstrated is thork regarding to 2D dose denoising. Future
work will involve thorough assessment of the systienbias introduced by DPGLM, optimization of
the algorithm to even further shorten denoising jmotimg time, assessment of its robustness for porta
images computed with a patient in the beam, angereralization for 3D dose denoising.
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Appendix A. DPGLM Gibbs sampler
In order to express all steps of the sampling ptoce we first give a generative prior model fog th
DPM parameters. Definitions of probability dendiipctions are given in Appendix B.

Vi, V,, ... ~Beta(l,a)
letw; =V, w, =V,(1-1,),..
Uit H12, -~ ]\/‘(ml,aﬁl)
U1, K22, -~ N(mz:aiz)
1t, 134, ... ~ Gamma(a,q, byy)
21,723, -~ Gamma(ayy, by,)
B1, Bazs .~ N (Mp, Tp)
012,052, ...~ Gamma(a,z, b 2)
let 6, = (11, H21,T11, T21, B, 1), 02 = (a2, 22, T12, T22, B2, OF), oo

This generative model is fully equivalent to th@pprobability densityf (w;, w,, ..., 64, 65, ...), and
corresponds to the DP prior for the random meagi(r¢ = ¥.;-; wy 6g, () ~ DP(a, Gy).

Given the DPM parameters, we complete the desonigly a generative model for the observed
data(x,;, x5;, v;). We introduce the latent classification varialfgsdefined fori = 1, ..., n, such that
K; = k if (xy;, x5, y;) is distributed from th&®" component of the mixtur(x,, x,, y).

For alli < n,

K;| wy,wy, ... ~ 2 wy 6, (+)
k=1

X1i, X2i| Ky 01, 02, . ~ N(x1i| #11(14‘[11(1-) ]\/‘(le-| #ZKL-:TZKL-)
Vil Kiy X1, %24, 01, 03, ... ~ N()’i| .31'<L- 'XKi(xlinzi): O_I%i)

This generative model is fully equivalent to tHeslihood
Ky, ooy Ky X11, X215 s X100 X200 V1) 00 Y| W1, Wa, o0, 01, 03, ..0)
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From these probability distributions and using Bayeale, we want to compute the conditional
probability density
fWi,wy, ., 01, O3, | K,y ooy Ky X110, X215 000 X100 X200 V1) 00 V)

This is achieved thanks to a Gibbs sampler whithegation(t) of the algorithm, successively draws
samples from, for alt,
Tyl Bars K1y ooy Ky X115 0005 X1
Tok| Mok K1y o) Ky X215 o00) X2
Pakl Tir K1y s Ky X113, 000, X100
P2kl Tog K1y ooy Ky X215 100, X2
Bl Bako ok Tiko T2k i Kay ooy Ky X11, X215 o0y X100 X2m V1o w00 Vi
| Bk ok Tiko T2ier Bioo Ky oos Ky X115 X210, o) X1y X2y V1 +o0) Y
Wi, Wy, ... | Ky, -, Ky
And for alli < n,
2 2

Ki|%14, X210, Yis B11s Ba2s s B210 225 > T115 T125 =+ T21, T220 s B1, B2y o+, 01, 0%, ..

The nonparametric behavior of the method is charaetd by a potentially infinite collection of
parametersy, and 8,. This computational difficulty can be tackled bwrtcation of the DP at a
predefined huge number of components (Ishwaran Jardes 2001). We suggest here another
approach (Kallet al. 2011). This latter method introduces auxiliaryiallesu; which allow sampling
only a finite random number of components at iteratioft) while avoiding any hard truncation of
the model. We are now ready to describe all stéfisecalgorithm.
e Initialize at random.

- Sample forl <i < n,u;~Uniform(0,1/n), and sett* = min, ({w;})

- SampléV/; ~Beta(1,a). Setw; =V, andr; =1 —V;.

- Fork > 1, generat&, ~Beta(1, a), setwy, = Vj 1,_q, Setry = 1,1 (1 = V},), until r, < u”*.

- Set tok™ the maximum value df.

- Sampleg, for 1 < k < k™, following prior distributions.

For iteration t =1, ..., T,
¢ Sample(deli;xzi;yl‘;#n: ooy Bty 15 ooy B2pc®s Taicts oo Taie®s T2pcts ooes T20c*s P ---:ﬂx*;af: ---:U;g*)
fori <n.
- Compute forl < k < k¥,
- A=
1wy > ;) max(wy, 1/n) NV (g g T1e) N Ceailbzie T21) N (V2| Bie - Xie Cersn X20), 07 )
wherel(4) is the indicator functiont(4) = 1 if A is true and.(4) = 0 otherwise.
- Generate&;~ ——— Y% ;. 8, (K))
zk=1/1k

* Reorder components labels following thaider of appearance when generating;. Set tok,, the
number of distinctK;. Set, for allk < k,, n, = #{K; = k}, the number of data assigned to
componentk.

o Sampléw;,w, ..., Uy, ..., un| Ky, ..., Kp)

- Sample(wl,wz, ...,WKn,T'Kn) ~ Dirichlet(nl,nz, ...,n,cn,a)

- Sample foi < n, ui~Unif0rm(O,min(wk, 1/n))

- Setu* = min, ({u;})

- Fork > k,, generat&, ~Beta(1, @), setw, = Vj, r,_1, Setr, = r,_1 (1 — V), untilr, < u™.

- Setk™ to the maximum value df.
o Sample(tik| ik K1y ) Kny %11, - X10) fOrk < x*,

-1 N 2
Ty ~Gamma( ar; + 7'1711 +5 2 (1 — Hak)
{i: K=k}

o Sample(tai| tar, K1) s Kny %21, -0, X2p) fOr k < k67,

20



Denoising techniques combined to MC simulationgtierprediction of high-resolution portal images

-1 M 2
Tk ~Gamma| a,, + > by, + > (x2; — Max)
{i: Ki=k}
«  Sample(uik| T1k, K1) o) Ky X11, 0, X100) fOr k < K7,

2 2
01 (Z{i: Ki=k} x1;) + My1 Tik - Opr T1k )

ﬂ1k~N< 2 , 2
Ny 04 + Tk Nk 04 + T1k

«  Sample(uzk| T2k, K1) s Kny %11, 00 X1) fOr k < k%,

0% (E{i: Ki=k} xzt) + My Tk Oz Tok
U ~N 2 ’ 2
Ny 0, + Tk Ny 0, + Tk
* Sample(ﬂk| Hager Mot Tao T2k O Ky ooy Ky 11, X210, o0) X100 Xoms V1, ---J’n) fork <«
- Set
~ ’ ~ -1
2t ki=ky Xie (o1 %20 - X ey X20) 4
Tg = 2 +1g
O
- Set
Yo k=i X X2) v,
Mﬁk=rﬁk'< - +Tp " Mg
k
- Sample

Bie ~ N(Mﬁk'rﬁk)
 Sample(of| e Kot Trie Ta Bio Kio oo Ky X115 X215 o) X1 Xoms Y1, o0, ) TOP kK < K7,

) n 1 1 2
oy “~Gamma| a,z + T,baz + 5 z (yi = Br 'Xk(xu':xzt))
{i:Ki=k}

» Compute at iteratioft) for any chosefix,, x,),

wie Ny [parer Tard N ez | pak Tai) P
) Br - Xie (%1, %2)
k=121=1 wy NV (g | pa, T10) NV Oz lpz0, T21)
The smoothed EPID image may or may not share time gaid as initial MC data since one can
choose any poirx,, x,) of interest. In particular, it is easy to intergtel between initial data points.

d (x1,)® = E(ylx) =

Then, from allT iterations of the Gibbs sampler, we can computaltise estimate

T
A G ~ Y d Gy x) 0
X1,%) ~ % X1, %

t=1
In addition, we can also compute the dose poststérdard deviation

T
1 R 2
04 (x1,x2) = (mz (d (x1:x2)(t) —d (x1,x2)) )
t=1

1
2

Hyper parameters.
Note that some hyperparameters can be fixed camsidenowledge from MC simulations. Typically,
the mean of the prior distribution @rf can be fixed to the mean of variances stored énBRID’s
dose data file for pixels allocated to th& component. Hyperparameters may either be estimated
through another level of hierarchy and settinghtent vague priors. As an example, we can put a
Gamma(¢,,Y,) prior on the scale parametebs; and b, in the distribution of components
excursions. This choice leads to a Gamma postéistibution. E.g.
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1

Kn
b1~ Gamma| @ + Kk, Yy + z
k=1T1k

It is also worthwhile to estimate the concentragpanameterr of the DP following Escobar and West
(1995).

We may also notice that we found efficient to repléhe Gaussian prior on regression coefficigpts
by a so-called empirical Bayes prior based on sampP locations (¥4, %21, .., X1p, X2p) from
N(Uik, Ti)N (Uak, T2) and take for(yy,...,7p) the nearest value of; corresponding to each
sampled points? has to be greater than the length of vegfoWe use theg, ~ N(Mﬁ, Fﬁ) as prior
with

~ I o~ -1
(o= Ke(Fap Fap) - Kic(Frp, Fap)
Iy = 7
Z;l;:l)?k (flp: pr) yp
o

Expression for the posterior f is straightforward.

Appendix B. Reminder on some probability density factions definitions used in DPGLM.
e Uniform(a, b) distribution, fora < x < b withb > a.
1
funiform(a,p)(X) = {b —a
0 ifa>xorx>»b

ifa<x<b

* Betda, b) distribution, for0 < x < 1.
) = I'(a + b)
fBete(a,b) X) = F(a)r(b)

Wherel'(a) represents the Gamma functiorain

xa—l(l _ x)b—l

e Gammda, b) distribution, forx > 0,
¢ a—1,-bx

b
fGammda,b) (x) = ') X e

* Multivariate normal (gaussian) distributidvi(u, Q), for x € RP?,

1 o3 0 (- p)
P 1
2m) 12|1Q| 72
Where |A| stands here for the determinant of matrix A. Note that this definition covers the
univariate case whenp = 1.

f]\r(u,n) x) =

« Dirichlet(ay, ay, ..., ag) distribution for x = (x;,%5,...,xx) €RK, x;>0 for 1<i<K,

Kbxi <1,x¢ =1-YKx,anda; >0for1 <i <K,

F(a1+a2+'"+0(,<) a 1 K—1
- — 1— —
fDIrICh|et((X1,(12.--ua1{) (x) F(al)r(az) F(aK) ‘xl

x%27 1 Lxg
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