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ABSTRACT

Dosimetry methods outside the target volume are still not well established in radiotherapy. Lumines-
cence detectors due to their small dimensions, very good sensitivity, well known dose and energy
response are considered as an interesting approach in verification of doses outside the treated region.
The physical processes of thermoluminescence (TL), radiophotoluminescence (RPL) and optically stim-
ulated luminescence (OSL) are very similar and can be described in terms of the energy band model of
electron-hole production following irradiation.

This work is a review of the main dosimetric characteristics of luminescence detectors which were
used in experiments performed by EURADOS Working Group 9 for in-phantom measurements of sec-
ondary radiation (scattered and leakage photons). TL LiF:Mg,Ti detectors type MTS-7 (IFJ PAN, Poland),
types TLD-100 and TLD-700 (Harshaw), OSL Al;03:C detectors type nanoDot™ (Landauer Inc.) and RPL
rod glass elements type GD-352M (Asahi Techno Glass Coorporation) are described. The main charac-
teristics are discussed, together with the readout and calibration procedures which lead to a determi-
nation of absorbed dose to water.

All dosimeter types used show very good uniformity, batch reproducibility and homogeneity. For
improved accuracy, individual sensitivity correction factors should be applied for TL and OSL dosimeters
while for RPL dosimeters there is no need for individual sensitivity corrections.

The dose response of all dosimeters is linear for a wide range of doses.

The energy response of GD-352M type dosimeters (with Sn filter) used for out-of-field measurements
is flat for medium and low energy X-rays.

The energy dependence for TLDs is low across the range of photon energies used and the energy
correction was neglected. A significant over response of Al,03:C OSLDs irradiated in kilovoltage photon
beams was taken into account. The energy correction factor fe, was calculated by using the 2006
PENELOPE Monte Carlo code.

With suitable calibration, all dosimeter types are appropriate for out-of-field dose measurements as
well as for the in-phantom measurements of radiotherapy MV X-rays beams.

© 2013 Published by Elsevier Ltd.

* Corresponding author. Tel.: +385 1 4561098; fax: +385 1 4680098.
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1. Introduction

The goal of rapidly evolving radiation treatment technologies
such as intensity-modulated radiotherapy (IMRT) or tomotherapy
is improvement in local tumor control. The priority during treat-
ment planning is to apply the maximum dose to the tumor whilst
minimizing side effects, such as normal tissue complications. It has
been recognized for some time that irradiation of healthy tissues
with low doses of scattered radiation from patient and machine
collimator, leakage photons and secondary neutrons may increase
the risk of development of secondary cancers remotely from the
target volume (Newhauser and Durante, 2011). Growing interest in
the dosimetry of out-of-field doses (sometimes referred to as pe-
ripheral doses) has resulted in a number of in-phantom measure-
ments (Xu et al., 2008), for which passive solid state detectors,
such as thermoluminescence detectors (TLDs), detectors based
on optically stimulated Iuminescence (OSLDs) and radio-
photoluminescence (RPL) glasses, may be suitable. TL, OSL and RPL
dosimeters are reusable and provide stand-alone measurement
techniques (i.e. they do not need cables or other physical connec-
tors). Usually during measurements performed distantly from the
target volume, doses are smaller than 1 Gy and correction for
nonlinear dose response of TL, OSL and RPL detectors is not
necessary. The energy dependence of dosimeters in the experi-
ments, where the effective energy of the photon radiation field is
difficult to assess, is important and will be analyzed for all three
types of dosimeters.

This paper presents a brief overview of the properties of TL
(MTS-7, TLD-100, TLD-700), OSL (nanoDot™) and RPL (GD-352M)
dosimeters, which were used by EURADOS Working Group 9 (WG
9) for in-phantom measurements of out-of-field doses from scat-
tered photons for modern radiotherapy techniques. Results and
description of experiments performed by WG 9 are provided (Bordy
et al,, in this issue) and (Miljani¢ et al., in this issue).

2. Basic principles of thermoluminescence (TL), optically
stimulated luminescence (OSL) and radiophotoluminescence
(RPL)

The basic principles of thermoluminescence (TL), optically
stimulated luminescence (OSL) and radiophotoluminescence (RPL)

are described in Fig. 1 in terms of the energy band model of
electron-hole production following irradiation.

TL and OSL are processes in which light is emitted from an
irradiated insulator or semiconductor during exposure to heat (TL)
or light of a specific wavelength (OSL). The TL and OSL intensity is a
function of absorbed dose in a sample and thus can be used as a
basis of radiation dosimetry methods. The process begins with
irradiation causing ionization of valence electrons and creation of
electron-hole pairs. Pre-existing defects within the material
localize the free electrons and holes through non-radiative transi-
tions. Subsequent heating or illumination with light of the irradi-
ated sample leads to the absorption of energy by trapped electrons
and transitions from the localized trap into the conduction band.
Recombination of the freed electrons with the localized holes re-
sults in radiative emission and luminescence i.e. the stored energy
is released in the form of visible light (the TL or OSL signal is pro-
portional to the dose). It is not clear that the same defect centers are
involved in both TL and OSL processes in any material (Batter-
Jensen et al., 2003).

The RPL dosimeter consists of silver activated phosphate glass.
The silver atoms doped in the phosphate glass exist uniformly and
stably in the form of Ag" ions. When the phosphate glass is exposed
to ionizing radiation, electrons are lifted up into the conduction
band, trapped by silver ions and form stable RPL luminescent
centers (Ag®). RPL centers can occur also by the migration of holes
through glass and combine with Ag" ions to form Ag**. This
mechanism is presented in the following reactions (ATGC, 2007):

PO4 — e~ = hPOy4
Agt + e~ = Ag’(electron trap)

Ag" +hPO4 = Ag*™'(hole trap)

RPL centers (Ag® and Ag*+) excited with the UV light release an
orange luminescence of intensity proportional to absorbed dose.
Ag® and Ag** centers do not return to the Ag® state until the
temperature is raised to the annealing conditions. This enables the
possibility of multiple readout of RPL detectors without destroying
the signal, which differentiates RPL from TL and OSL.

—> @® Conduction band

4 . A
Ts v‘.
o0
Ee Tt ___________________
g—20

Stimulation
Heat (TLD)
Light (OSL)
UV (RPL)
TL signal
r__®0 =" 0SLsignl
RPL signal

» Valence band

>

Fig. 1. Basic principles of TL, OSL and RPL process. lonizing radiation creates electron-hole pairs. These electrons and holes become trapped at defects Tand H. The trap T; represents
an unstable trap, from where the probability of escaping is large. T; is a trap for storage of electrons where the probability of escaping (without external stimulation) is negligible. By
stimulating the sample either thermally (TL), optically (OSL) or by UV (RPL), electrons gain sufficient energy to escape from trap and recombine with holes in recombination centres

(R). The recombination is followed by the emission of light. Eg is the Fermi level.
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3. Luminescence dosimeters for out-of-field dosimetry in
radiotherapy

In medicine, radiobiology and especially in modern radio-
therapy, small size luminescence dosimeters (TL and OSL dosime-
ters) are applied for validation of radiotherapy treatment planning
systems (Waligérski et al., 2002), for verification of treatment plans
in anthropomorphic phantoms (Al-Hallaq et al., 2006; Han et al.,
2008) and for in vivo (Costa et al., 2010) and two-dimensional (2-
D) (Olko et al., 2008) dosimetry. TLDs find their application as
transfer dosimeters during quality audits of the dose delivered by
radiotherapy treatment machines (Izewska et al., 2002). An over-
view of dosimetry measurements in radiotherapy (in primary
beams) with RPL detectors type GD-301 and GD-302M is shown in
Table 1 in chronological order. A very interesting area of experi-
ments with luminescence detectors is dosimetry of out-of-field
doses. These doses received by patients were investigated for
different radiation therapeutic modalities, different types of radi-
ation and different tumor localizations. Table 2 chronologically
summarizes recently published dosimetry studies on peripheral
doses in radiotherapy performed with TL and OSL dosimeters.

In experiments performed by WG 9 (Bordy et al., in this issue;
Miljani¢ et al., in this issue) three types of TL LiF:Mg,Ti detectors:
MTS-7, TLD-100 and TLD-700, were used. WG 9 used also OSL
Al>03:C nanoDot™ detectors and RPL detectors type GD-352M.
Basic characteristics of the above detectors are presented in
Table 3 and Table 4.

The most fundamental feature of LiF:Mg,Ti (MTS-7, TLD-100 and
TLD-700) detectors is that they are based on a lithium fluoride
matrix with magnesium defects. The range of dopant concentra-
tions for LiF:Mg,Ti is usually reported to vary between 0.01 and
0.02% for Mg and 10—15 ppm for Ti (Bilski, 2002). LiF detectors with
effective atomic number Z.s = 8.14 are considered as tissue
equivalent (McKeever, 1985). For TL detectors sensitivity correction
is a commonly used technique of improving the accuracy of mea-
surements (Table 4). The stability of the TL system may be even
within 2% (Toivonen, 1993), but may depend on TL reader quality

Table 1

and stability and also on dosimeter type and type of radiation
(Oliveira and Caldas, 2004).

The nanoDot™ (Landauer Inc.) dosimeters contain a single
circular OSL dosimeter (5.0 mm in diameter) placed in an adapter.
The sensitive diameter of the detector is 5 mm and an effective
depth of 0.1 g/cm? is assumed as the point of measurement. An
excellent review of OSL systems was published by Akselrod et al.
(2007). NanoDot™ OSL dosimeters show good uniformity in
sensitivity, as the Al,03:C powder used in their production is a
homogenized mixture of different crystals. To improve the ac-
curacy, in measurements performed by WG 9, sensitivity
correction factors for particular dosimeters were applied. Their
values varied between 91% and 107% and were given by the
manufacturer. The nanoDot™ OSLDs cannot be annealed to high
temperatures, as in the case of the single crystals, because of the
plastic holder. Although the OSL signal can still be erased by
optical illumination (bleaching), sensitivity changes related to
filling of deep traps in the crystal cannot be reversed (McKeever
and Moscovitch, 2003). Jursinic (2007) observed that the sensi-
tivity is unchanged up to accumulated doses of 20 Gy, but de-
creases for higher doses.

RPL dosimeters that are most commonly used in the field of
medical dosimetry are small glass rods (GD-300 series). The weight
composition of RPL glass is as follows: 31.55% P, 51.16% O, 6.12% Al,
11.0% Na, 0.17% Ag (Piesch, 1972). The effective atomic number and
density are 12.04 and 2.61 g/cm® respectively. The active dose
readout volume is 1T mm in diameter and 0.6 mm depth located
0.7 mm from the end of the rod. The GD type RPL dosimeter has a
plastic holder with holder cap with walls of 0.3 mm thickness. The
geometrical readout center of GD type RPLs is 1 mm from the cap
surface (ATGC, 2007). In measurement campaigns that were done
by WG 9, the GD-352M type of RPL dosimeters was used. This type
contains an energy compensation tin filter and is suitable for out-
of-field dose measurements where scattered photons predomi-
nate. There is no need for individual sensitivity corrections because
for RPL dosimeters, variability of individual response is very small
(Perks et al., 2005) (Table 4).

The overview of the experiments that used small RPL glass rod dosimeters type GD in radiotherapy.

Type of dosemeter Type of experiment/treatment

Authors

GD-301 and GD-302M (without energy compensation filter) for use in radiotherapy

GD-301 Measurement of absorbed dose in mice exposed to *’Cs

GD-301 Dosimetric characteristics for 4, 6 and 18 MV X-rays (water phatnom)

GD-301 Measurements of Gamma Knife helmet output factors

GD-302M Dose measurements on patients and physicians during endovascular brain treatment

GD-301 Dosimetric properties in high energy photon beams from alinac (4 and 10 MV) and Cyberknife (6 MV)

GD-301 In vivo dose measurements on head and neck cancer patients during high dose brachytherapy

GD-302M Stereotactic radiosurgery dosimetric audit

GD-302M Measurement of internal dose distribution of °°Y beta-ray source in a phantom simulated mice

GD-302M Study of dosimetric characteristics for X-ray '*’Cs and ®°Co irradiation

GD-301 Comparison of RPL and TLD characteristics in the field of '*’Cs and %°Co source

GD-302M In vivo HDR brachytherapy phantom dose measurements

GD-302M Comparison of RPL and TLD for postal dosimetry audit for high energy photon beams (5°Co, X-rays
from a linac: 4, 6, 10, 20 MV)

GD-302M Measurement of entrance surface doses on patients and physicians during uterine artery embolisation
and organ and tissue dose measurement with RPL and TLD

GD-301 In vivo dosimetry study for HDR interstitial brachytherapy for patients with pelvic malignancy

GD-301 Measurement of output factors for CyberKnife (6 MV linac)

GD-301 Study of dosimetric characteristics for use in QA audit program (in °°Co beam, photon beams from
linac 6, 15 MV and electron beams 6—20 MeV)

GD-301 Postal dosimetry audit for high-energy photon beams (°°Co, photon beams from linac, 6, 10,15 MV)

GD-301 Dosimetric characteristics for total body irradiation (TBI) treatment and in vivo dose measurements
on TBI patients

GD-302M Measurements of output factors for Gamma Knife for different helmet collimators

GD-302M Dosimetric characteristics in high energy photon (4, 6, 10, 15 MV) and electron beams (5, 7, 8, 9, 10,

12, 16, 20 MeV)

Hoshi et al. (2000)
Tsuda (2000)

Araki et al. (2003)
Nishizawa et al. (2003)
Araki et al. (2004)
Nose et al. (2005)
Perks et al. (2005)
Sato et al. (2006)
Hsu et al. (2007)
Zhuo et al. (2007)
Hsu et al. (2008)
Mizuno et al. (2008)

Nishizawa et al. (2008)
Nose et al. (2008)

Rah et al. (2008)

Rah et al. (2009)

Rah et al. (2009a)
Rah et al. (2011)

Hsu et al. (2011)
Son et al. (2011)

Note: Size of the glass element of GD-301type is 1.5 x 8.5 mm? and of GD-302M type is $1.5 x 12 mm?.
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The overview of recently published dosimetry studies on peripheral doses performed in radiotherapy with TL and OSL dosimeters.

Type of dosemeter (TLD/OSLD)

Type of experiment/treatment

Authors

OSLD Al,05:C (Luxel)

TLD CaF, (TLD-200)

TLD LiF:Mg,Ti (TLD-700)

TLD LiF:Mg,Ti (TLD-600, TLD-700)
TLD LiF:Mg,Ti (TLD-700, TLD 100)

TLD LiF:Mg,Ti (TLD-700)
TLD LiF:Mg,Ti (TLD 700, TLD 600)

TLD LiF:Mg,Cu,P (GR-200A)

TLD LiF:Mg,Cu,P (MCP-600D,
MCP-700D)

TLD LiF:Mg,Ti (TLD-600, TLD-700)

TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Cu,P (GR-200A)
TLD LiF:Mg,Cu,P

TLD LiF:Mg,Ti (TLD-600, TLD-700)
TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Ti (TLD-100)
TLD LiF:Mg,Ti (TLD-600, TLD-700)

TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Cu,P (MCP-N)

TLD LiF:Mg,Ti

TLD @-Al,05 (TLD-500) and TLD
LiF:Mg,Ti (TLD-700)

TLD LiF:Mg,Ti (MTS-6, MTS-7)

TLD LiF:Mg,Ti (TLD-100)

OSLD Al,05:C (microStar™ DOT),
TLD LiF

TLD

TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Ti (TLD-600, TLD-700)

TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Cu,P (TLD-100H),
TLD LiF:Mg,Ti (TLD-100)

TLD LiF:Mg,Ti (TLD-100)

OSLD Al,03:C (nanoDots)

In vivo determination of extra-target doses received from serial tomotherapy
Radiotherapy of Hodgkin’s disease in early pregnancy: embryo dose measurements
Peripheral neutron and gamma doses in radiotherapy with an 18 MV linear accelerator
Measurements of secondary neutron dose from 15 MV to 18 MV IMRT

Out-of-field photon and neutron dose equivalents from step-and-shoot intensity
modulated radiation therapy

Dose evaluation in lung-equivalent media in high-energy photon external radiotherapy
In vivo and phantom measurements of the secondary photon and neutron doses

for prostate patients undergoing 18 MV IMRT

Dosimetric analysis of thyroid doses from total cranial irradiation

Characterisation of MCP-600D and MCP-700D thermoluminescence detectors and
their applicability for photoneutron detection

Determination of the neutron spectra around an 18 MV medical LINAC with a passive
Bonner sphere spectrometer based on gold foils and TLD pairs

Is electron beam intraoperative radiotherapy (ELIOT) safe in pregnant women with
early breast cancer? In vivo dosimetry to assess fetal dose

The investigation of fetal doses in mantle field irradiation

In-Phantom peripheral organ doses from prostate irradiation using 18 MV external
beam radiotherapy measured with 6LiF:Mg,Cu,P & 7LiF:Mg,Cu,P glass-Rod TLDs
Neutron fluence in antiproton radiotherapy, measurements and simulations
Methodology for determining doses to in-field, out-of-field and partially in-field
organs for late effects studies in photon radiotherapy

Accuracy of out-of-field dose calculations by a commercial treatment planning system
Dose estimation of the neutrons induced by the high energy medical linear
accelerator using dual-TLD chips

Out-of-field photon dose following removal of the flattening filter from a medical
accelerator

Effect of organ size and position on out-of-field dose distributions during radiation
therapy

Organ and effective doses from verification techniques in image-guided radiotherapy
The role of shielding in superficial X-ray therapy

Explicit estimation of out-of-field neutron and gamma dose equivalents during proton
therapy using thermoluminescence-dosimeters

Evaluation of risk of secondary cancer occurrence after proton radiotherapy of ocular
tumours

Assessing doses of radiotherapy with the risk of developing cancer in the head and neck
Estimating dose to implantable cardioverter-defibrillator outside the treatment fields
using a skin QED diode, optically stimulated luminescent dosimeters, and LiF
thermoluminescent dosimeters

Involved field radiation for Hodgkin’s lymphoma: the actual dose to breasts in close
proximity

Second cancer incidence risk estimates using BEIR VII models for standard and
complex external beam radiotherapy for early breast cancer

Out-of-field dose measurements in a water phantom using different radiotherapy
modalities

Scattered dose to radiosensitive organs and associated risk for cancer development
from head and neck radiotherapy in pediatric patients

Assessment of leakage doses around the treatment heads of different linear accelerators

Thyroid exposure to scattered radiation and associated cancer risk from pediatric
radiotherapy for extracranial tumors

Energy response of optically stimulated luminescent dosimeters for non-reference
measurement locations in a 6 MV photon beam

Meeks et al. (2002)
Mazonakis et al. (2003)
Vanhavere et al. (2004)
Howell et al. (2005)
Kry et al. (2005)

Duch et al. (2006)
Reft et al. (2006)

Acun et al. (2007)
Brunckhorst et al. (2008)

Esposito et al. (2008)
Galimberti et al. (2009)

Karacam et al. (2009)
Takam et al. (2009)

Bassler et al. (2010)
Howell et al. (2010a)

Howell et al. (2010b)
Hsu et al. (2010)

Kry et al. (2010)
Scarboro et al. (2010)
Dufek et al. (2011)
Medvedevas et al. (2011)
Mukherjee et al. (2011)
Stolarczyk et al. (2011)
Yu et al. (2011)

Chan et al. (2012)
Dabaja et al. (2012)
Donovan et al. (2012)
Kaderka et al. (2012)
Kourinou et al. (in press)
Lonski et al. (in press)
Mazonakis et al. (in press)

Scarboro et al. (2012)

4. Principles of readout, annealing and measurement
procedure of TL, OSL and RPL dosimeters

Dosimetry with TLDs requires complex thermal annealing steps
(Table 5), which result in re-establishing the defect equilibrium.

High precision is required for the stability and accuracy of the
time—temperature profile of the annealing procedure because
changes of the order of a few degrees can lead to significant
changes in the charge migration and the sensitivity of TLDs
(McKeever and Moscovitch, 2003). The main emission band of the

Table 3
Characteristic of different detectors used for out of field measurements (WG 9 EURADOS).
Detector Material Form Dimensions (mm) Zoff Reader
MTS-7 (IF] PAN, Poland) ’LiF: Mg, Ti, Pellet ® 45 x 0.9 8.14 RA'94 TL Reader-Analyser (Mikrolab, Poland)
TLD-700 (Harshaw) ’LiF: Mg, Ti Pellet ® 45 x 0.9 8.14 Modified TOLEDO 654 reader (Vinten)
TLD-100 (Harshaw) Nt iF: Mg, Ti Pellet ®45x09 8.14 Modified TOLEDO 654 reader (Vinten)
nanoDot™ dosimetry system Al,03:C Pellet adapter d=5mm 11.28 Semiautomatic reader MicroStarTM (Landauer Inc.)
(Landauer Inc.) 10 x 10 x 2 mm
RPL (GD-352M) (ATGC) Ag activated Rod holder d1.5x%x 12 12.04 Automatic reader Dose Ace (FGD-1000)
Phosphate glass ® 43 x 14.5

Please cite this article in press as: Knezevi¢, Z., et al., Photon dosimetry methods outside the target volume in radiation therapy: Optically
stimulated luminescence (OSL), thermoluminescence (TL) and radiophotoluminescence (RPL) dosimetry, Radiation Measurements (2013),
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Table 4
The uniformity, reproducibility and fading for the TLD: MTS, TLD-100, TLD-700, OSL
nanoDot™ and RPL GD-352M.

Detector Uniformity Reproducibility Fading
MTS-7 (this work) 3% 2% <5% (per year)
29%°

TLD-700 (Miljani¢ et al., 2002) 3% 4% <5% (per year)
TLD-100 (Miljani¢ et al., 2002) 4% 3% <5% (per year)
OSL, NanoDot™ (Reft, 2009) 4%° 1% —

RPL (GD-352M) (Knezevi¢ 1.1-1.7% 0.4% 1.7% (150 days)

et al.,, 2011)

2 (without sensitivity correction).
b (with sensitivity correction).

emission spectrum for TL from LiF:Mg,Ti detectors consists of two,
overlapping Gaussian-shaped bands at 399 nm and 473 nm
(Mandowska et al., 2002). The readout of MTS-7 (Table 3) was
performed with the RA’94 TL Reader-Analyser reader with plat-
inum planchet heating and an EMI bi-alkali 9789QB photo-
multiplier tube with BG-12 infrared filter. The readout of TLD-100
and TLD-700 dosimeters (Table 3) was carried out using a modified
manual TOLEDO 654 (Vinten) reader which enables detailed anal-
ysis and integration of the glow curves with variable integration
limits (Knezevic¢ et al., 2005).

The read-out of nanoDot™ (Landauer Inc.) dosimeters with a
plastic adapter, which provides protection from light, was per-
formed in the semiautomatic reader MicroStar™. NanoDot™ sys-
tem (Perks et al., 2007). This uses continuous wave OSL (CW-0OSL)
which consists of the continuous illumination of the dosimeters
while monitoring the OSL intensity in a 1 s illumination-read
period (the initial OSL intensity). The optical stimulation in the
MicroStar™ reader is produced using an array of 38 green LEDs
operating in conjunction with a coloured glass bandpass filter
producing a peak emission at 540 nm (Jursinic, 2007; Yukihara
and McKeever, 2008). The OSL signal is measured by a photo-
multiplier tube filtered by a glass bandpasss filter (Hoya B-370)
providing a peak sensitivity at 420 nm. Depending on the dose
level, two light intensities are possible: for low doses, all 38 LEDs
are used, resulting in maximum stimulation and higher OSL
signal, but also a larger degree of signal depletion; for high doses,
only 6 LEDs are used, resulting in a lower OSL signal, but a low
degree of signal depletion (Jursinic, 2007; Yukihara and McKeever,
2008). For experiments carried out by WG 9 the calibration of the
MicroStar™ reader was performed in air separately for low
(<150 mGy) and high doses (>150 mGy). The calibration factor for
low doses is 1.607 x 10~/ Gy/pulse and for high doses is
2.682 x 107 Gy/pulse.

Table 5
Evaluation parameters for TL (MTS-7, TLD-100, TLD-700) and RPL GD-352M do-
simeters used in WG 9 measurements.

Detector MTS-7 TLD-100 RPL (GD-352M)
TLD-700

Pre-irradiation annealing

Temperature (°C) 400 + 100 400 + 100 400

Time (min) 60 + 120 60 + 120 20 or 60 (>1 Gy)

Preheat

Temperature (°C) 100 100 70

Time (min) 10 20 30

Readout

Temperature (°C) 360 270 UV excitation

Time (s) 60 35

Heating rate (°C/s) 5 10

The RPL dosimeter is an accumulation type solid state dosim-
eter. The light is emitted whenever laser pulses (20 pulses/second)
excite the glass; therefore the signal can be read multiple times in a
short time without destroying it and it is possible to achieve a
statistically better reproducibility by averaging many readouts. The
fluorescence emitted in glass by excitation by a pulsed UV laser
attenuates with time (ATGC, 2007).

The dose reading of GD type RPL dosimeters is done auto-
matically on the FDG-1000 reader. The FGD-1000 reader produces
a 337.1 nm wavelength pulsed ultraviolet laser beam to excite the
dosimeters which then emit a (6001700 nm) orange lumines-
cence. Dose reading is done automatically by setting the glass
elements into the readout magazine (20 elements or less). The
reader is automatically calibrated using the internal calibration
element and standard irradiation element (calibration is done free
in air) and provides a direct measure of dose. The internal cali-
bration glass element is calibrated annually by an external stan-
dard RPL dosimeter traceable to a secondary standards laboratory
(ATGC, 2007). By using a reference glass rod dosimeter (standard
irradiation element) simultaneously with a sample dosimeter, a
smaller standard deviation of dose measurements in comparison
to some other dosimetry techniques (Araki et al., 2003) can be
achieved. In order to eliminate stable RPL centers which are
created by irradiation, the dosimeters should be annealed. Addi-
tionally after irradiation and before readout the RPL dosimeters
should be preheated in order to accelerate the build-up activity
(Table 5). Build-up is a phenomenon whereby the RPL intensity
increases over a period of time and eventually stabilizes (up to
one month to fully stabilize as reported by manufacturer). Build-
up can be accelerated to saturation by a preheating process
(ATGC, 2007).

5. Calibration procedure of TL, OSL and RPL dosimeters
during EURADOS WG 9 experiments

Absorbed dose to water D,y is the quantity of main interest in
radiation therapy, since it is well defined and water is nearly
tissue equivalent for photons (TRS No. 398, IAEA, Vienna, 2000).
However, irradiation of passive solid state detectors directly in
terms of Dy, requires special waterproof holders, appropriate
water phantoms and is more time consuming, than calibration in
air. During WG 9 experiments, two approaches to calibration of
TL, OSL and RPL detectors in terms of Dy, which are easy to
realize and do not require specially designed equipment, were
applied. In the first approach, the calibration was performed in
terms of kerma free in air, K;i; followed by the application of
fealib, @ conversion factor from K,j; to Dy. In the second approach,
the entire calibration was performed in a phantom made of
PMMA, which is considered as water-equivalent. Calibration
conditions for TL, OSL and RPL dosimeters are presented in
Table 6.

5.1. Calibration in terms of kerma in air, Kgjr

For the measurements of the out-of-field doses in radiotherapy,
TL dosimeters types TLD-100 and TLD-700 and RPL dosimeters type
GD-352M were calibrated in terms of K. TL and RPL reference
dosimeters belonging to the same batch as sample dosimeters were
calibrated against ®°Co (Table 6) at the Secondary Standard
Dosimetry Laboratory at the Ruder Boskovi¢ Institute (RBI) (Veki¢
et al., 2006).

In order to express the results of measurements in terms of
absorbed dose to water Dy, conversion factors fcaiip from Kjjr to Dy,
were determined experimentally for TLD and RPL detectors ac-
cording to following formula:
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Table 6 energy dependence were taken into account during dose
Conditions of calibration of passive solid states detectors: TLD, OSLD and RPL. calculations
Detector MTS-7 TLD-100 RPL OSL The absorbed doses derived from TL and OSL measurements
TLD-700 (GD-352M) nanoDot™ were determined by the following formula:
Calibration source 50Co 80Co 50Co 60Co
Quantity Dy Kair Kair Kair Dw = Neai*M-fiaq fiin “fen feativ (2)
Phantom PMMA Air Air Air
fealib conversion — 1.099 (TLD-100) 1.120 1.11 where:

factor Kair to Dy, 1.102 (TLD-700)

Reference chamber ~ PTW 30010 PTW TW 30013 Primary
Farmer Farmer cavity
chambers
Field [cm x cm] 10 x 10 10 x 10 10 x 10 10 x 10

Source to chamber 80 100 100 100
distance SCD [cm]

M.ir /Kai
Seaiip = 7,&\2%? (1)

where:

M, is the mean value of the signal for dosimeter sample irra-
diated in air

My, is the mean value of the signal for dosimeter sample irra-
diated in water.

Kair is the known kerma in air value

D,y is the known absorbed dose to water value.

Irradiations in water were performed according to TRS 398 Code
of Practice (TRS No. 398, IAEA, Vienna, 2000) at a depth of 5 cm with
a %9Co source at 100 cm SCD and field size 10 x 10 cm?.

Once defined, f.aiip conversion factor may be applied multiple
times, when calibration is performed under the above conditions.

For measurements with OSL dosimeters, an internal calibration
of the OSL MicroStar™ reader, performed in air against %°Co source
(Table 6) at Commissariat a I'’Energie Atomique, LIST CEA-LIST,
France, was used. For OSL dosimeters, the correction factor from
Kair to Dy, was calculated using the ratio of mass energy absorption
coefficients for water and air (absorption coefficients were taken
from NIST data (NIST, 2008)). In this approach measurements in the
water phantom are not necessary.

5.2. Calibration in PMMA phantom

TL MTS-7 dosimeters were calibrated in a PMMA phantom
(30 x 30 x 15 cm?) with a ®°Co source (Table 6). Dy, was determined
with an ionization Farmer type chamber at zf = 5 cm. However,
MTS-7 dosimeters were calibrated at the depth of maximum dose,
Zmax = 0.5 cm. To determine D,y at zyax the central axis percentage
depth-dose (PDD) data from TRS No. 398 were used (TRS No. 398,
IAEA, Vienna, 2000). Discrepancies in the determination of absor-
bed dose due to density variations of PMMA and to the approximate
nature of the procedures for scaling depths and absorbed dose from
plastic to water were neglected.

6. Dose calculations and uncertainties for TL, OSL and RPL
dosimeters during WG 9 experiments

Luminescence detectors allow only relative dosimetry to be
performed i.e. no absolute dose measurements using the single
detector are possible. The absorbed dose from measurements
with TL, OSL and RPL detectors is derived by comparison with
detectors irradiated with a known dose of radiation. Following
Izewska et al. (2008), fading, nonlinearity of dose response and

M is the signal of a sample dosimeter after background
subtraction

Ncal is the calibration coefficient relating signal to a known
absorbed dose

fad is the fading correction factor

fiin is the dose response non-linearity correction factor

fen is the energy correction factor

feaib is the conversion factor from Kjj; to Dy,.

The absorbed dose measured with RPL detectors was calculated
according to Eq. (3), Eq. (4) and Eq. (5)

accum = Msample'nc‘Hst/mst (3)
Dmeasured = Daccum — Dinitial (4)
Dy = (Dmeasured - Dcontrol)'fcalib (5)

In Eq. (3):

Diccum is the accumulated dose value

nc is the reader correction factor

Hg is the dose value of the standard glass

myg is the readout value of the standard dosimeter

Msample is the readout value for the sample dosimeter.

After annealing, all RPL dosimeters should be read out in order
to measure initial dose values Dipjtial Of glass elements (sub-
tracted pre-dose).

D,y was calculated according to Equations (4) and (5) where fcaiib
is the correction factor from Kij; to Dy, and D¢ontrol is the back-
ground dose.

In order to avoid correction for fading of the TL and OSL signal
(for RPL dosimeters fading is negligible (Rah et al., 2009a)) cali-
bration and sample detectors were irradiated on the same day. The
nonlinearity correction factor fii, was considered to be negligible
for all detectors (see Section 8). For TLDs, the energy correction
factor fen, was assumed to be insignificant. Also for RPL dosimeters,
fen was not applied (in RPL dosimeters type GD-352M an energy
compensation filter is built-in). The energy correction factor fe,, was
found to be meaningful for OSL detectors (see Section 7).

The analysis of the uncertainty in dose calculations is based on
the assumption that the factors in Equations (2)—(5) are uncorre-
lated. The combined relative standard uncertainty ud(Dy) for Dy
determined from the TL, OSL or RPL measurements is the square
root of the sum of the squared individual relative uncertainties
(Kirby et al., 1992; Izewska et al., 2008). The combined uncertainty
for TL detectors type MTS-7 is urp(Dw) = 2.9% for doses varying
from 2 mGy to 5 Gy and utp(Dw) = 4.2% for doses below 2 mGy
(Table 7). OSLDs are capable of providing dose estimates with an
uncertainty of an order of 0.7—3.2%, depending on the readout
equipment and methodology (Yukihara and McKeever, 2008). The
total uncertainty estimated by Reft (2009) for nanoDot™ dosime-
ters is at a level of 4.7% for kilovoltages energies. In order to assign
the uncertainty of reproducibility for RPL dosimeters, a set of five
readings of each GD-352M dosimeter was taken and the standard
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Table 7 4
Relative standard uncertainties (1 SD in %) in the individual components and the @ TLD LiF:Mg,Ti (Mobit et al., 2006)
combined uncertainty u(D,y) in the determined dose for TLD (MTS-7) and RPL (GD- o ;J( gé?_ldliihg‘&(g?wf ell 356[)2;03)
. B 1 A 1,0, (Mobit et al.,
352M) dosimeters. g >2 A OSLD ALO, (Reftetal, 2009)
Factor Relative standard uncertainties & 4 | ° B OSLDALO, (Bordy etal., 2012)
@ A @ RPL GD-352M (with Sn filter)
MTS7 (this work) GD-352M (this work) c (Hsu et al., 2007)
e © RPL GD-302M (Hsu et al., 2007)
M ~1.7% (2 mGy—5 Gy) ~0.8% (1 mGy—2 Gy) @ 1
~3.5% (below 2 mGy) ~1.9% (below 1 mGy) ; 4
Neal 2.3% 1.5% 3 o] A
ftad fen fiin Negligible ]
fang - 1.2% 3 #
Combined standard ~2.9% (2 mGy—5 Gy) ~2.1% (1 mGy—2 Gy) g 1 - :f’ oo ® X
uncertainties ~4.2% (below 2 mGy) ~2.7% (below 1 mGy) % a 0o n,—_fo o®m
S 1 . o g B w xoxx x
2 .
deviation (SD) of the mean value of M was calculated (Table 7). In 3 "
the calculation of the combined standard uncertainty for GD-352M =
dosimeters, the angular correction factor according to the data from 0 —— —— e
10 1

the literature (Son et al., 2011) was taken into account.

7. Energy dependence

The energy dependence is particularly important when the
spectra of the photon radiation fields are difficult to assess, as in
case of the determination of dose to critical organs outside the
radiation field in external beam radiotherapy. According to simu-
lations performed by Edwards and Mountford (2004) the energy
spectra outside the field edge show two main distinct regions: a
broad peak below about 0.5 MeV and a lower amplitude region at
higher energies from 0.5 MeV to up to the maximum energy. The
lower energy peak is due to photons which have undergone single
or multiple Compton scattering in the phantom and the higher
energy component is mainly due to primary photons transmitted
through the jaws of the secondary collimator. The narrow peak at
0.511 MeV is due to pair production interactions, which may occur
in the components with a high atomic number. The intensity of
peaks decreases with distance from the field edge because more
X-rays undergo multiple scattering and absorption.

The energy dependence of dosimeters in photon beams is linked
to their effective atomic number Z¢ and the probability of photon
interactions. Zes values for detectors used in this work are shown in
Table 3. Zgr of air is equal to 7.78, of water to 7.51, and of muscle
tissue to 7.64 (Johns and Cunningham, 1983). It is evident that the
inherent energy dependence in comparison with tissue is the best
for LiF TL detectors. In Fig. 2 Mobit et al., 2006 the OSLD, TLD and
RPL dosimeters’ energy response data are plotted at the kilovoltage
and megavoltage energies. All detector materials over-respond in
kilovoltage photon beams (more for those with a larger proportion
of higher Z elements) due to higher interaction probabilities for the
photoelectric effect (photoelectric mass cross section is propor-
tional to approximately Z3).

The highest over response of LiF:Mg,Ti TLDs by a factor of 1.37
was measured in a photon beam of 30 keV effective energy (Davis
et al., 2003). An excellent discussion of the dependence of LiF TLD
response on variations in photon energy spectra in radiotherapy
was presented by Scarboro et al. (2011). For locations outside of the
treatment field, the over response of TLDs was reported as up to
12%. During measurements of out-of-field doses made by EURADOS
WG 9, the influence of the energy response of LiF TLDs type TLD-
100, TLD-700 and MTS-7 was considered negligible and the en-
ergy correction factor fz in Eq. (2) was neglected.

The increased response of OSLD Al,03:C at lower energies is
attributed to the increased probability of the photoelectric effect in
the aluminum oxide. Reft (2009) measured the OSLD nanoDot™
response for photons as a function of energy from 125 kVp to 18 MV.
For instance, the energy response factor is 3.5 for 35 keV X-rays. For

Energy [keV]

Fig. 2. The relative energy response of TLD LiF, OSLD Al,0; and RPL GD-352M do-
simeters for photon energies from 15 keV to 6.5 MeV normalized to ®°Co (TLD and
OSLD) and to '*’Cs (RPL dosimeters).

the requirements of the dosimetry of scattered and secondary
photons outside the target volume with nanoDot™ dosimeters,
performed by WG 9, energy dependence was taken into account
(detailed results are given in a paper provided by Bordy et al. (in this
issue). fen was calculated using the 2006 PENELOPE Monte Carlo
code (Salvat et al., 2006). The configuration of the irradiation was
simulated and the model of the entire head of the accelerator has
been validated enabling precise calculations of energy fluence at
each point of measurement (Fig. 3) (Bordy et al., in this issue).

Taking into account energy dependence, there are two types of
glass rod RPL dosimeters: one without an energy compensation
filter (GD-301 and GD-302M) and a second type containing a
holder with a tin filter (GD-351 and GD-352M). Generally, the GD-
301 and-GD-302M types are used in high energy photon beams in
radiotherapy whereas the GD-351 and GD-352M are used in diag-
nostic radiology. Because RPL glasses have a relatively high density
(2.61 g/cm?) and high effective atomic number (12.04), they over-
respond to low energy photons primarily due to photoelectric ab-
sorption. As shown in Fig. 2, GD-302M type (without filter) pos-
sesses very high energy dependence for low energy X-rays. Similar
results were obtained with GD-301, about 350% at 30 keV (Zhuo
et al,, 2007). At the same time, GD-352M (with a Sn filter) shows
energy dependence from —3.1% to +2.6% in the same energy range
(Hsu et al., 2007). The results provided by Mizuno et al. (2008), Rah
et al. (2009a), and Son et al. (2011) indicate that the RPL dosimeters
GD type (without filter) are suitable for clinical and experimental
use especially for in-field dose measurements in radiotherapy.

RPL dosimeters type GD-352M (with Sn filter) used for the
measurements of out-of-field doses in high energy photon beams
in radiotherapy performed by WG 9 showed good agreement with
ionisation chamber measurements in the out-of-field region. For
dose measurements at the target volume in the high energy photon
field, the reading of RPL dosimeter type GD-352M overestimates
the dose and should be corrected. (Bordy et al., in this issue;
Miljani¢ et al., in this issue). In the high energy photon field, RPL
glasses types GD-301 and GD-302M (without a Sn filter), should be
used (Mizuno et al., 2008; Rah et al., 2009a).

8. Dose dependence

For the measurement of non-target doses in radiotherapy it is
important that the dosimeters exhibit a large range of linearity
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Fig. 3. Energy fluence at a measurement point at distance 18 cm from the beam axis in a water tank. Simulation was done for 12 MV X-rays with a 10 x 10 cm? field with a Saturne

43 at 100 cm from the source.

from low doses (~0.1 mGy) up to radiotherapy doses of a few Gy
(~2 Gy).

The dose response of LiF TLDs depends on impurity composi-
tion, ionization density, supralinearity of individual glow peaks,
emission spectrum, grain size, physical state, heating rate and
annealing parameters (Horowitz, 1981). LiF:Mg,Ti detectors exhibit
good linearity up to 2 Gy and supralinearity at higher doses
(Gamboa-deBuen et al., 1998; Waligorski et al., 1999). Massillon
et al. (2006) investigated the response of LiF:Mg,Ti (TLD-100)
induced by ®°Co irradiation at doses from 4.18 mGy to 8.32 kGy. The
response of the main dosimetry peaks (4 and 5) as a function of
dose is linear up to =1Gy and supralinear for higher doses.

The OSLD dose response depends on experimental parameters:
crystal growth (Yukihara et al., 2004), the optical filters used in
front of the PMT (Yukihara and McKeever, 2006), the stimulation
intensities (initial OSL intensity or total OSL signal) (Yukihara and
McKeever, 2008) and the dose history of the dosimeter (Edmund
et al,, 2006). Yukihara et al. (2007) reported supralinearity for
doses above 5 Gy for Luxel™ dosimeters read using a Risg TL/OSL
reader. The dose response of nanoDot™ OSL dosimeters is linear up
to 2 Gy with supralinearity occurring at higher absorbed doses
(Reft, 2009). In general, supralinearity of OSL Al;03:C dosimeters
for doses above around 2 Gy was noticed (Jursinic, 2007; Schembri
and Heijmen, 2007).

The response of RPL dosimeters has a good linear relationship
when compared with the ion chamber response for dose ranging
from 0.5 to 30 Gy. The differences were within +2% (Araki et al.,
2004). Also in the low dose range from 0.1 mGy to 500 mGy RPL
dosimeters showed linear dose response with coefficient of varia-
tion 0.6—4.8% (Knezevic et al., 2011). In comparison to TL and OSL
dosimeters, RPL dosimeters did not show an over-response for the
higher doses.

9. Conclusions

The TL (type TLD-100, TLD-700 and MTS-7), OSL (type nano-
Dot™) and RPL (GD-352M) dosimeters proved to be suitable
dosimetry systems for photon measurements in different clinical
situations and radiotherapy treatment protocols. All types of do-
simeters showed good reproducibility and uniformity. For better
accuracy, individual sensitivity correction factors for TL and OSL

dosimeters are used, while for RPL there is no need for individual
sensitivity determination. The dose response is linear over a wide
range of doses needed for out-of-field dose measurements in
radiotherapy and all the dosimeters can be used down to very low
doses.

TLD-100, TLD-700 and MTS-7 show very good energy depen-
dence across all ranges of energy spectra used. For OSL nanoDot™
detectors the correction protocol has been established due to over
response at low energies. Although RPL dosimeter type GD-352M
shows very good agreement with ionization chamber measure-
ments in the out-of-field region where scattered radiation prevails,
at the target volume in the high energy photon field, this type
overestimates dose to an extent depending on radiation energy and
should be corrected (Bordy et al., in this issue). According to liter-
ature data (Rah et al., 2009; Mizuno et al., 2008) types GD-301 and
GD-302M (without Sn filter) do not show energy dependence in
high energy photon fields and are recommended for future mea-
surements in the target volume. With suitable calibration, TL (type
TLD-100, TLD-700 and MTS-7), OSL (type nanoDot™) and RPL (GD-
352M) dosimeters are appropriate for the out-of-field dose mea-
surements as well as for the in- or out-of- phantom dose mea-
surements in MV X-rays beams.
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