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Abstract

This paper deals with the development of a semi-analytical model for the fast computation of
the quasi-static field induced by any Eddy Current probe in a 3D conductor of complex shape. The
workpiece is considered as a planar half-space mock-up with an interface air-conductor characterized
by an arbitrary 2D surface a(x, y). The curvilinear coordinate method consists in introducing a
change of coordinates in order to be able to write analytically and easily the boundary conditions at
the interface air-metal. Due to the novel generalized metric space, the covariant form of Maxwell’s
equations must be considered. The Curvilinear Coordinate Method (CCM) is widely used in the
optical community for the analysis the diffraction phenomenon on gratings. The method has
been applied recently for Eddy Current calculations in the planar case for 2.5D configurations
characterized by a 3D eddy current probe and a 2D layered stratified conducting media. By an
extension to 3D problems, this work constitutes the preliminary task for the development of a
complete numerical model which has the capability to address very complex Eddy Current Non-
Destructive Testing (ECNDT) configurations such as a stratified layered media constituted by a set
rough interfaces. For that purpose, the modal formalism is described for the first time in the 3D
case and several numerical experiments show the validity and the efficiency of the fast numerical
model in comparison to the Finite Element method.

1 Introduction

The fast computation of the response of a 3D eddy current probe scanning any homogeneous conductor
of complex shape presents a kind of challenge in Eddy Current Non-Destructive Testing (ECNDT)

*E-Mail: denis.premel@cea.fr
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community. Without speaking about the response of the EC sensor due to a tiny flaw such as a crack
or a notch, it is often required to compute the response of the probe due to some local variations of
the geometry of the workpiece. For instance, during any inspection procedure, some corrosion defect
may be represented by variations of the thickness of layers in aircraft lap joints. Since, the change in
the impedance of the EC probe may be calculated by using the Auld’s formula and the reciprocity
principle, it is necessary to compute as quickly as possible the tangential components of the quasi-
static electric and and magnetic field at the air-metal interface. The Curvilinear Coordinate Method
(CCM) is particularly effective for this work since these tangential components are forwardly obtained
when writing analytically the boundary conditions at the desired interface. Indeed, this approach is
based on a specific change of coordinates which is called the translation system of coordinates which
is non necessary orthogonal. Though this method is very popular, in the optical domain, for the
computation of the fields scattered by 2D diffraction gratings [1] or by perfectly conducting random
surfaces [2] enlightened by a plane wave it is less known in the low frequency community. To the best
of our knowledge, the CCM was used for the first time in 2008 by D.Prémel in a preliminary study
for a 2D eddy current problem [3]. Then, it has been employed for simulating a first 2.5D ECNDT
configuration [4] before developing more practical cases of interest: a 3D EC probe scanning a 2D
multilayered conductor with parallel [5] or non-parallel interfaces [6]. The purpose of the present paper
is to address the following 3D problem: a 3D EC probe scanning a 3D conductor of complex shape
presenting a rough interface varying along the two directions x and y and described by any analytical
equation z = a(x, y) (see figure 1). In contrast to purely numerical models which require a mesh
of the workpiece, CCM can provide a semi-analytical model by using a modal decomposition of the
tangential components of the electromagnetic field which depends on the surface itself. The originality
of this method precisely lies in the fact that the modal decomposition is specifically linked to a change
of coordinates which induce a metric tensor obtained in some analytical manner. In a previous work,
the tangential components of the field were reconstructed from two auxiliary potentials by introducing
as usual a second order vector potential formulation [7]. In the present paper, the formulation is very
similar to what is done in waveguide theory where the tangential components (the so-called transverse
components in the waveguide context) components are reconstructed from two scalar potentials which
are the two longitudinal components of the fields. The key of this method is to derive the modal
expansions of the two scalar potentials. It has to be emphasized that the sought eigenfunctions
depend on the metric tensor describing the local variations of the geometry. Modal solutions are
numerically obtained in the 2D Fourier space by solving a generalized eigenvalue algebraic equation
deduced from the wave equation satisfied by the two potentials. The main difficulty of the numerical
problem lies in obtaining of the eigenvalue matrix due to the truncation, in some practical case of the
Fourier domain. This point will be particularly discussed in this paper. Anyway, solving the eigen-
problem represents the most time-consuming step of the new developed code. This paper is organized
as follows. The CCM is firstly described for 2D arbitrary interfaces a(x, y). Maxwell’s equations are
written under the covariant form with the coefficients of the metric tensor the new non-orthogonal
coordinates. A TE/TM decomposition is then derived with the longitudinal covariant components of
the electromagnetic field as generating functions. The eigenvalue problem is numerically solved by
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Figure 1: A 3D EC probe is scanning a conductive slab with a rough interface varying along the two
directions x and y.

using the method of moments in the spectral domain. Boundary conditions are then introduced in
order to find numerically the coefficients of the modal expansion of the two potentials. Some numerical
experiments show the validity of the numerical model and some simulated data obtained from a Finite
Element (FE) commercial software are compared to data provided by the resulting numerical model.
The cartography of the tangential components are displayed for one position of the EC probe before
presenting finally the change of the impedance of the EC probe when scanning the 2D perturbed
surface. The current limitations of the method due to the truncation of eigensolutions in the Fourier
domain and to the requirement in term of memory space are discussed. The paper is closed by some
conclusions, remarks and perspectives for the future.

2 Physical formalism of the problem

In this section, we recall the 3D formalism of the C-Method which comes from the optical domain but
it must be translated in our context. The main problem consists in obtaining the modal decomposition
of the tangential components of the field on each interface taking into account the novel metric tensor
resulting from the change of coordinates.

2.1 Change of coordinate system

Let us consider a homogeneous conductive slab presenting a 2D rough interface varying along the two
axis x and y described by an arbitrary analytical equation z = a(x, y) (see figure 1). In this figure,
the rough surface is separating two media, the air domain above and the conductor one below. The
current medium will be denoted by the index p in the following (p = 0, 1). In this example, the EC
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probe is an air-core probe of cylindrical shape but its may be rectangular, D-shaped or a meander one
since boundary conditions include the values of the tangential components of the electromagnetic field
at the interface provided by any kind of air-core coil. The introduction of a ferrite core will require
more developments in order to take into account coupling effects, one principle solution is described
in the reference [8]. Let us apply the following non-orthogonal translation coordinates system:

x = x1

y = x2

z = x3 + a(x1, x2).
, (1)

In this new coordinate system, the interface fits a coordinate surface. Thus, writing boundary
conditions at the interface becomes easier since it amounts to write four equalities at x3 = 0. However,
Maxwell’s equations become more complicated because the covariant form of Maxwell’s equations
which does not depend on the choice of coordinate system [9] must be used for taking into account
the novel metric tensor. Indeed, considering a map from a cartesian coordinate system {x, y, z} to a
new coordinate system

{
x1, x2, x3

}
the jacobian transformation matrix J is for instance given in [10]:

J =

 ∂x
∂x1

∂x
∂x2

∂x
∂x3

∂y
∂x1

∂y
∂x2

∂y
∂x3

∂z
∂x1

∂z
∂x2

∂z
∂x3

 =

 1 0 0
0 1 0
ȧ1 ȧ2 1

 (2)

where it is assumed that a(x, y) = a(x1, x2) is a differentiable function according to the two directions
x and y. Let us denote by ȧ1 = ∂xa and ȧ2 = ∂ya the partial derivatives. Since Jt stands for the
transposed matrix of J, the tensor metric gij = JtJ and the conjugate tensor metric gij = [gij ]

−1 are
given by:

gij =

1 + ȧ21 ȧ1ȧ2 ȧ1
ȧ1ȧ2 1 + ȧ22 ȧ2
ȧ1 ȧ2 1

 , [gij] =
 1 0 −ȧ1

0 1 −ȧ2
−ȧ1 −ȧ2 1 + ȧ21 + ȧ22

 =

 1 0 g13

0 1 g23

g13 g23 g33

 (3)

The determinant g of gij is g = |gij | = 1. In this natural coordinate system, the covariant
components of the electrical (magnetic) field E1, E2 (H1, H2) corresponds to the tangential components
of the electrical (magnetic) field.

2.2 Covariant form of Maxwell’s equations

According to E. Post [9] and assuming a time dependence eiωt, the complex amplitudes of the covariant
components of the electrical and the magnetic fields, respectively denoted by Ei and Hi are linked by
Maxwell’s equations:{

ξi,j,k∂jEk = −iωµ0µp
√
g gij Hj

ξi,j,k∂jHk = iωε0εp
√
g gij Ej

, {i, j, k} ∈ {1, 2, 3} (4)
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where ε0 and µ0 stand for the vacuum magnetic permeability and the vacuum dielectric permittivity
and εp and µp stand for the relative magnetic permeability and the relative dielectric permittivity of
the medium p. Since the conductivity of the medium is denoted by σp, its relative permittivity may

be a complex number given by εp = 1− iσp

ωε0
. ∂j denotes the partial derivative operator with respect to

the variable xj and ξi,j,k denotes the Lévi-Cività indicator [11]. By an observation of these equations,
it is important to note that even if the medium is a homogeneous one, changing the coordinates
system leads to substitute the initial electromagnetic properties of the medium by an electrical and
permittivity tensor ε = ε0εp

√
g gij and a magnetic permeability tensor µ = µ0µp

√
g gij .

2.3 TE/TM decomposition

In our particular case, by considering the wavenumber k = ω
√
ε0µ0 and keeping in mind that the

contravariant metric tensor gij does not depend on the variable w,
(
i.e., ∂3g

ij ≡ 0
)
, it is trivial to

obtain a set of six equations:

∂2E3 − ∂3E2 = −ikµ0µp
(
G1 + g13G3

)
(5)

∂3E1 − ∂1E3 = −ikµ0µp
(
G2 + g23G3

)
(6)

∂1E2 − ∂2E1 = −ikµ0µp
(
g13G1 + g23G2 + g33G3

)
(7)

∂2G3 − ∂3G2 = ikε0εp
(
E1 + g13E3

)
(8)

∂3G1 − ∂1G3 = ikε0εp
(
E2 + g23E3

)
(9)

∂1G2 − ∂2G1 = ikε0εp
(
g13E1 + g23E2 + g33E3

)
(10)

where G denotes the magnetic field normalized by the vaccuum wave impedance as G =
√

µ0

ε0
H.

Then, it is possible to choose two potentials which are the longitudinal covariant components of the
fields E3 and G3, so from (7) and (10), one can obtain:

G3 = − 1

ikµ0µp
[g33]−1

[
∂1E2 − ∂2E1 − g13G1 − g23G2

]
(11)

E3 = +
1

ikε0εp
[g33]−1

[
∂1G2 − ∂2G1 − g13E1 − g23E2

]
(12)

If we substitute these expressions into (5, 6, 8) and (9), the tangential components of the electromag-
netic field are given by [12]:(

k2c + ∂23
)
E1 =

(
∂1∂3 − k2cg

13
)
E3 − ikµ0µp

(
∂2 + g23∂3

)
G3(

k2c + ∂23
)
E2 =

(
∂2∂3 − k2cg

23
)
E3 + ikµ0µp

(
∂1 + g13∂z

)
G3(

k2c + ∂23
)
G1 = ikε0εp

(
∂2 + g23∂z

)
E3 +

(
∂1∂3 − k2cg

13
)
G3(

k2c + ∂23
)
G2 = −ikε0εp

(
∂1 + g13∂z

)
E3 +

(
∂2∂z − k2cg

23
)
G3

(13)
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with k2c = k2µpεp. Then, let us introduce the separation of variable so that Φ(x1, x2, x3) = ϕ(x1, x2) exp−iγx3
.

Thus, the partial derivative operator ∂23 can be substituted by −γ2 and provided that k2c − γ2 ̸= 0,
one can obtain the tangential components:

E1 =
1

k2c − γ2
[(
∂1∂3 − k2cg

13
)
E3 − ikµ0µp

(
∂2 + g23∂3

)
G3

]
E2 =

1

k2c − γ2
[(
∂2∂3 − k2cg

23
)
E3 + ikµ0µp

(
∂1 + g13∂z

)
G3

]
G1 =

1

k2c − γ2
[
+ikε0εp

(
∂2 + g23∂z

)
E3 +

(
∂1∂3 − k2cg

13
)
G3

]
G2 =

1

k2c − γ2
[
−ikε0εp

(
∂1 + g13∂z

)
E3 +

(
∂2∂z − k2cg

23
)
G3

]
(14)

The above relations show that in homogeneous source-free region, the components of the fields can be
expressed as a linear combination of a TE field (E3 = 0) and a TM field (G3 = 0).

2.4 The eigenvalue problem to solve

The main problem consists in writing any propagation (diffusion) equation which must be satisfied by
the two potentials. After some tedious calculations, is is possible to show that the two potentials E3

and H3 satisfy the same Helmholtz’s equation translated in the new coordinates system [12]:[
g33∂23 +

(
∂1g

13 + g13∂1
)
∂3 +

(
∂2g

23 + g23∂2
)
∂3 + ∂21 + ∂22 + k2c

]
ϕ = 0 (15)

Let us consider the notations ϕ′(x1, x2) = ∂3ϕ(x
1, x2) and η2 =

(
∂21 + ∂22 + k2c

)
. The wave propagation

becomes:
−∂3ϕ′ =

(
g33

)−1 [(
∂1g

13 + g13∂1
)
+

(
∂2g

23 + g23∂2
)]
ϕ′ +

(
g33

)−1
η2 ϕ (16)

An eigenvalue system can be obtained by adding the equation iϕ′ = γϕ, so:[
iϕ′

ϕ

]
γ =

[
−i

(
g33

)−1 [(
∂1g

13 + g13∂1
)
+
(
∂2g

23 + g23∂2
)] (

g33
)−1

η2

Id 0

] [
iϕ′

ϕ

]
(17)

In order to progress into the numerical resolution of the problem, it is necessary to choose now any
basis functions in order to obtain an algebraic equation to solve the eigenvalue problem (17). This is
the purpose of the next section.

2.5 Numerical strategy: projection on basis functions

In order to discretize the differential operators, a 2D-Fourier transform is defined along the directions
x1 and x2. The corresponding spatial frequencies are denoted by α and β respectively. The potential
ϕ(x1, x2, x3) in the spatial domain may be reconstructed from the potential ϕ̂(α, β, x3) in the spectral
domain:

ϕ(x1, x2, x3) = T F−1
[
ϕ̂(α, β, x3)

]
=

∫∫ +∞

−∞
ϕ̂(α, β, x3) e−i(αx1+βx2) dα dβ. (18)
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Thus, the first eigenvalue system (17) can be translated in the Fourier domain. Considering ψ = iϕ′

and by using usual rules in the Fourier domain, one obtains:[
ψ̂

ϕ̂

]
γ =

[(
ĝ33

)−1 ∗
[(
α ∗ ĝ13 + ĝ13 ∗ α

)
+

(
β ∗ ĝ23 + ĝ23 ∗ β

)] (
ĝ33

)−1 ∗ η̂2
Id 0

] [
ψ̂

ϕ̂

]
(19)

where η2 is also transformed in the Fourier domain η̂2 =
(
k2c − α2 − β2

)
and ∗ denotes the convolution

product in the Fourier space. Id stands for the identity operator. This representation of the potential
assumes a continuous Fourier space. In practice, the Fourier space must be discretized and truncated.
To do that, we exploit the same explanations as already presented in two previous papers [3] and [13]
except it must be generalized to the 2D Fourier space. In summary, let us assume a finite number of
harmonics to represent the potential, hence:

ϕ(x1, x2, x3) = T F−1
[
ϕ̂(α, β, x3)

]
≈

m=+M∑
m=−M

n=+N∑
n=−N

ϕ̂mn e
−iαmx1−iβnx2

. (20)

The convolution product
(
ĝ ∗ ϕ̂

)
(α, β, x3) results in the discrete Fourier space by a matrix product

of the form [g] ϕ̂ where ϕ̂ is a column vector resulting from the concatenation of all the discrete
values ϕ̂mn. [g] is a truncated 2D convolution matrix generated by the column vector resulting from
the concatenation of the discrete values ĝmn in the 2D Fourier space. The keystone of this numerical
model lies in building all the 2D truncated convolution matrices. Moreover, in Fourier space the

derivation is a multiplicative operator ∂1ϕ(x
1, x2, x3)

FT−→ −iαϕ̂(α, β, x3). In truncated 2D spectral
domain, the partial derivation with respect to variable x1 consists operationally in multiplying the
approximated solution by a matrix D1 such that D1 = −i [α]⊗ I2M+1 with [α] = diag(αm), I2M+1

the identity matrix of size 2M+1 and ⊗ the kronecker product. In the same way, the matrix associated
to the partial derivation with respect to variable x2 is D2 = −iI2N+1 [β] with [β] = diag(βn). Finally,
we obtain the following eigenvalue algebraic system in the discretized 2D Fourier domain:[

ψ̂

ϕ̂

]
γ =

[
−
[
ĝ33

]−1
[D]

[
ĝ33

]−1 [
η̂2

]
Id 0

] [
ψ̂

ϕ̂

]
(21)

with
[
η̂2

]
= k2c +D1D1+D2D2 and [D] = iD1

[
ĝ13

]
+
[
ĝ13

]
iD1+ iD2

[
ĝ23

]
+
[
ĝ23

]
iD2. To complete

the description of the discrete operators, it is necessary to develop the expressions of the matrices[
ĝij

]
: [

ĝ13
]
=

[
ĝ31

]
= −

[
Âu

]
(22)[

ĝ23
]
=

[
ĝ23

]
= −

[
Âv

]
(23)[

ĝ33
]
= Id +

[
ĝ13

] [
ĝ13

]
+
[
ĝ23

] [
ĝ23

]
(24)

where
[
Â1

]
and

[
Â2

]
stand for the convolution matrices associated with the Fourier transforms

T F(ȧ1) and T F(ȧ2) respectively. One can note also that
[
ĝ33

]−1
is the inverse matrix of

[
ĝ33

]
.
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2.6 Modal expansion of the potentials

For each medium p, the numerical eigensolutions of equation (19) provides a modal expansion of the
two scalar potentials E3 and G3:

Ê
(p)
3 =

∑
q

ψ(p+)
q Γ

TE(p+)
q e−iγ(p+)

q x3

+
∑
q

ψ(p−)
q Γ

TE(p−)
q e−iγ(p−)

q x3

Ĝ
(p)
3 =

∑
q

ψ(p+)
q Γ

TM(p+)
q e−iγ(p+)

q x3

+
∑
q

ψ(p−)
q Γ

TM(p−)
q e−iγ(p−)

q x3 (25)

where ψ
(p)±
q denotes the eigenvectors associated to the eigenvalues γ

(p)±
q . The unknown coefficients

are Γ
TE(p)±
q and Γ

TM(p)±
q . The forward the backward contributions of the field differ from the sign ±

of the exponents and non-physical solutions (growing towards infinity) are suppressed.

2.7 Particular case: the half-space

In the particular case where the rough surface separates two half-spaces, let us denote the air domain
p = 0 and the conductor p = 1. In order to guaranty the decreasing of the field in each domain,

the expansion of the field involves only two eigensolutions: ψ
(0+)
q corresponding to ℑ(γ(0+)

q ) < 0 and

ψ
(1−)
q corresponding to ℑ(γ(1−)

q ) > 0. Moreover, at the interface x3 = 0, the two vectors Ê
(p)
3 and Ĝ

(p)
3

which are resulting from the concatenation of all its numerical values in the 2D Fourier space can be
obtained by two matrix relationships. Without taking into account the incident field at this step, the
contributions of the fields due to the slab are given by:

Ê
(0)
3 = ψ(0+)ΓTE(0+), Ĝ

(0)
3 = ψ(0+)ΓTM(0+), in air

Ê
(1)
3 = ψ(1−)ΓTE(1−), Ĝ

(1)
3 = ψ(1−)ΓTM(1−), in the conductor.

(26)

The discrete versions of equations (14) gives the expansions of the tangential components of the
electromagnetic field at the interface x3 = 0, so for the field vectors:

Ê
(p)
2

Ĝ
(p)
1

Ĝ
(p)
2

Ê
(p)
1

 =


+ikµ0µp M±

p

O±
p

N±
p

−ikµ0µp P±
p

ΓTE(p±) +


N±

p

+ikε0εp P±
p

−ikε0εp M±
p

O±
p

ΓTM(p±) (27)

The operators are given by:

M±
p = D1ψ

(p±)
[
D

(p±)
λ

]−1
+
[
ĝ13

]
ψ(p±)

[
D

(p±)
λ

]−1
D

(p±)
3

Np± = D2ψ
(p±)

[
D

(p±)
λ

]−1
D

(p±)
3 − k2c

[
ĝ23

]
ψ(p±)

[
D

(p±)
λ

]−1

Op± = D1ψ
(p±)

[
D

(p±)
λ

]−1
D

(p±)
3 − k2c

[
ĝ13

]
ψ(p)

[
D

(p)
λ

]−1

Pp± = D2ψ
(p±)

[
D

(p±)
λ

]−1
+
[
ĝ23

]
ψ(p±)

[
D

(p±)
λ

]−1
D

(p±)
3

(28)

8



Figure 2: The 3D EC probe is scanning a conductive planar slab for computing the reference field.

with D
(0+)
3 = −iγ(0+) and D

(1−)
3 = −iγ(1−) are two diagonal matrices constituted by all eigenvalues

in the region p ∈ {0, 1}. D(p±)
γ is also a diagonal matrix constituted by all values k2c −

[
γ(p±)

]2
in the

region p ∈ {0, 1}. The matrices M±
p ,N±

p ,O±
p and P±

p correspond to the operators associated to the

progressive or regressive coefficients in both air (p = 0) and conductor (p = 1). The vectors ΓTE(p±)

and ΓTM(p±) of unknown coefficients are then estimated by applying boundary conditions.

2.8 Boundary conditions for the half-space

The continuity of each tangential component of the electromagnetic field must be satisfied at the
interface air-conductor. Indeed, at the rough surface w = 0, the electromagnetic field at the surface is
the sum of a reference field provided by any EC probe and a reflected field due to the presence of the
conductive slab. Since, the electromagnetic field must be evaluated at w = 0, the values of reference
field must be calculated on the rough surface. The reference configuration may be however arbitrary
chosen, so we choose to consider an EC probe scanning a conducting plate of finite thickness, the
planar slab is located at the lowest point of the surface. This point is illustrated on a slice view in

figure 2. Since the two conditions k2c −
[
γ(0+)

]2 ̸= 0 and k2c −
[
γ(1−)

]2 ̸= 0 are satisfied both together,
the first set of boundary conditions can be written in a matrix form in the Fourier domain so that:

ikµ0µ1 M+
0 N+

0 −ikµ0µ2 M−
1 −N−

1

O+
0 +ikε0ε1 P+

0 −O−
1 −ikε0ε2 P−

1

N+
0 −ikε0ε1 M+

0 −N−
1 +ikε0ε2 M−

1

−ikµ0µ1 P+
0 O+

0 +ikµ0µ2 P−
1 −O−

1



ΓTE(0+)

ΓTM(0+)

ΓTE(1−)

ΓTM(1−)

 = −


Ê

(ref)
2

Ĝ
(ref)
1

Ĝ
(ref)
2

Ê
(ref)
1

 (29)

where the terms Ê
(ref)
1,2 and Ĝ

(ref)
1,2 are the Fourier transforms of the tangential components of the

reference field. The resolution of this system by a direct matrix inversion leads to the computation of
the coefficients in both media.
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2.9 Computation of the impedance of the probe

The most usual way to compute the the response of the EC probe, the electrical impedance ∆Z
consists in using the reciprocity principle and the formula derived by Auld and Moulder [14, 15]:

I2 ∆Z =

∫∫
SF

(Ea ×Hb−Eb ×Ha) ·n ds (30)

where I denotes the amplitude of the driving current in the coil. The subscript a and b stand for
indicating two different states. The first one can represent the configuration of reference previously
discussed, the EC probe scanning a conducting planar slab while the second one refers to the EC
probe scanning the rough surface itself. SF is an arbitrary closed surface bounding the workpiece but
excluding the coil (see Figure 3), n is the unit outward normal with respect to the closed surface SF .
For this geometry, SF is chosen to be a surface which fits the interface air-conductor considering an

Figure 3: Definition of the closed surface SF .

infinitesimal distance over the top surface of the workpiece and all the workpiece is enclosed if we
consider an hemisphere as shown in Figure 3. In the limit of R tending to infinity, the contribution
to this surface S∞ tends to zero. In Equation (30), the surface SF can be just substituted by the 2D
rough surface denoted by S supported by the profile a(x, y). Into the new coordinates system, this
formula becomes:

I2 ∆Z =

∫∫ +∞

−∞

(
E

(ref)
1 (x1, x2)H2(x

1, x2)− E
(ref)
2 (x1, x2)H1(x

1, x2)
)
dx1 dx2 (31)

To conclude about the theoretical aspects, the tangential components of the field need to be numerically
estimated to deduce the change in the impedance of the EC probe. The numerical integration may be
performed easily by using a trapezoidal rule. To obtain the absolute impedance, it is necessary to sum
the result ∆Z with the impedance of the planar configuration calculated by the same semi-analytical
model used for the computation of the reference fields.

3 Numerical results and discussion

Before the presentation of numerical results, it is necessary to discuss about the numerical inversion
of the system (29). Indeed, the matrix to invert may be ill-conditioned when any of two terms
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Tp = k2c −
[
γ(p±)

]2
, p ∈ {0, 1} are close to zero. The purpose of the following section is to discuss

about this specific key point of the numerical model.

3.1 Regularization of the problem

Even if the two terms T1 = k2c −
[
γ(0+)

]2
and T2 = k2c −

[
γ(1−)

]2
cannot be equal to zero, in practice,

the condition number of the matrix to invert strongly depends on the closeness of these terms to zero.
Thus, any additional treatment must be added to address this situation. In the particular case where
k2c − γ2 = 0, equations (5, 6, 7, 8, 9, 10) lead to a set of four equations:

∂3E2 = +ikµ0µp G1, ∂3E1 = −ikµ0µp G2

∂3G2 = −ikε0εp Eu, ∂3G1 = +ikε0εp E2
(32)

and we have to choose another TEM decomposition. The first polarization consists in E2 = 0 and

G1 = 0. Knowing that γ = kc = ±k2µpεp and since ∂3E1 = −iγ E1, we must satisfy G2 = ±
√

ε0εp
µ0µp

E1.

The two last equations in (32) are automatically satisfied. For the second polarization, let us consider

E1 = 0 and G2 = 0. In this case, we must satisfy the relationship G1 = ∓
√

ε0εp
µ0µp

E2. In summary,

when k2c −
[
γ(p±)

]2
= 0, the TEM decomposition is given by:
Ê

(p)
2

Ĝ
(p)
1

Ĝ
(p)
2

Ê
(p)
1

 =


ψ(p±)

∓
√

ε0εp
µp
ψ(p±)

0
0

ΓTE(p±) +


0
0

±
√

ε0εp
µp
ψ(p±)

ψ(p)

ΓTM(p±) (33)

In practice, a threshold t0 is chosen in order to combine the two TE/TM decompositions. For each
media, the eigenvalues γ(0+) and γ(1−) are ordered in ascending order. According to the value of t0,

the two conditions |k2c −
[
γ(0+)

]2 | ≤ t0 and |k2c −
[
γ(1−)

]2 | ≤ t0 may be satisfied simultaneously or

separately. When |k2c −
[
γ(0+)

]2 | ≤ t0, the TE/TM decomposition (27) is substituted by the TEM
decomposition (33). So,we have to solve the following system:

−ψ(0+) 0 +ikµ0µ2 M−
1 N−

1

±
√

ε0ε1
µ0µ1

ψ(0+) 0 O−
1 +ikε0ε2 P−

1

0 ∓
√

ε0ε1
µ0µ1

ψ(0±) N−
1 −ikε0ε2 M−

1

0 −ψ(0+) −ikµ0µ2 P−
1 O−

1



ΓTE(0+)

ΓTM(0+)

ΓTE(1−)

ΓTM(1−)

 = −


Ê

(ref)
2

Ĝ
(ref)
1

Ĝ
(ref)
2

Ê
(ref)
1

 (34)
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Moreover, when the condition |k2c −
[
γ(1−)

]2 | ≤ t0 is simultaneously satisfied, we have to solve the
simplified system:

ψ(0+) 0 −ψ(1−) 0

∓
√

ε0ε1
µ0µ1

ψ(0+) 0 ±
√

ε0ε2
µ0µ2

ψ(1−) 0

0 ±
√

ε0ε1
µ0µ1

ψ(0+) 0 ∓
√

ε0ε2
µ0µ2

ψ(1−)

0 ψ(0+) 0 −ψ(1−)



ΓTE(0+)

ΓTM(0+)

ΓTE(1−)

ΓTM(1−)

 = −


Ê

(ref)
2

Ĝ
(ref)
1

Ĝ
(ref)
2

Ê
(ref)
1

 (35)

Depending on the value of the threshold t0, the reciprocal condition number of the matrix can be
evaluated. Figure 4 displays the change in the condition number versus the value of the threshold.
According to the value of t0, the system to solve may be (29, 34) or (35). When the value of t0 is too

Figure 4: Variations of the reciprocal condition number of the matrix to be inverted. A well conditioned
matrix gives a reciprocal condition number near to 1.

low, for the two first levels represented in Fig. 4, the results are not satisfactory and the numerical
model does not give quite good results. If the value of t0 is greater than 10−3, the numerical model can
provide quite good results. In this case, only the two equations (29) and (35) are used and then, from
the evaluation of the coefficients ΓTE(0+),ΓTM(0+),ΓTE(1−) and ΓTM(1−), the tangential components
of the field are reconstructed in the spatial domain before deducing the change in the impedance. The
impedance due to the reference planar configuration is added to obtain the total absolute impedance
of the probe. The next following section gives some numerical results of validation.

4 First validation case of the numerical model

For a first numerical validation, a very simple test configuration have been considered: a conducting
half-space is inspected by an air-core EC probe. Such a kind of schematic view of the scene is displayed
in Fig. 5. The 2D wavy shape function is assumed to be the product of two cosine functions of the
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form such as a(x, y) = hpa(x)a(y) with:

a(s) =
1

2

[
1 + cos

(
2π

s

Ls

)]
,∀s ∈ [−Ls/2, Ls/2], s = x or y

This particular surface function has been chosen for its smoothness, but any analytical function can
be chosen, as long as the Fourier transform of its first derivative is numerically tractable. The EC
probe considered here is a cylindrical pancake coil with a rectangular cross section. For this first
configuration, the probe is scanning the geometrical perturbation with a constant altitude. The other
parameters required for this numerical experiment are stored in table 1.

Figure 5: A shematic view of the configuration con-
sidered for the numerical validation.

Parameter symbol value

Conductor
Conductivity σ 1 MS/m
Depth of the flaw hp −2 mm
Length of the shape (x) Lx 10 mm
Length of the shape (y) Ly 10 mm

Probe
Frequency f 100 kHz
driving current I0 1 A
Internal radius rint 1.0 mm
External radius rext 1.6 mm
Height H 2 mm
Number of turns N 328
Lift-off l0 0.3 mm

Table 1: Simulation parameters.
In order to obtain simulated data for any comparison of the fields, this 3D configuration has

been also implemented in a commercial finite element software and the computation of the tangential
components of E and H have been carried out at the interface x3 = 0. To treat this particular
configuration, we fixed the numerical parameters M and N to 23 and 21 respectively. In Fig. 6,
the two tangential components of the electrical field obtained with the two numerical methods are
represented. For each cartography, a slice view is also displayed in Fig. 7 along the axis of interest.
We can see a very good agreement and the same comparison can be made with the same components
of H.

Moreover, the longitudinal component H3 is also represented in Fig. 8 with two cross section
in Fig. 9. In order to complete the numerical validation of the semi-analytical approach, we have
also computed the response of the probe (Impedance) for the two methods. These simulated data are
represented in Fig. 10. When the probe is sufficiently far from the local perturbation, the impedance
tends to the value which corresponds to a planar case. This value can be otherwise obtained rigourously
by the civa software. This value is also displayed on the curves. The very small discrepancy between
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Figure 6: Comparison of the tangential components of E provided by the C method (CCM) or by
Finite Element (FE). On the top, cartographies of real parts are displayed, imaginary parts are placed
at the bottom.

Figure 7: A sliceview of the comparison of the tangential components of E provided by CCM or by
FE.

the FEM model and the CCM model is quantified by the normalized root mean square error defined

14



Figure 8: Comparison of the longitudinal component of Hw provided by CCM or by FE. On the top,
cartographies of real parts are displayed, imaginary parts are placed at the bottom.

Figure 9: A sliceview of the comparison of the longitudinal component of Hw provided by CCM or by
FE. On the top, cartographies of real parts are displayed, imaginary parts are placed at the bottom.

separately on the real part and on the imaginary part:

εR =

√
∥ℜ(Z̃CCM − ZEF )∥2

∥ℜ(ZEF )∥2
, εX =

√
∥ℑ(Z̃CCM − ZEF )∥2

∥ℑ(ZEF )∥2
(36)
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Figure 10: Comparison of the probe response obtained with the CCM and the Finite Element method.
The errors are evaluated to εR < 0.3% and εX < 0.05%.

The computational time obtained with CCM in this particular configuration on a 64-bits platform
is about 9 mn without including the computation of the incident fields which are already done by
another model already implemented into the CIVA software [16]. This value represents the full time
necessary to compute the eigenfunctions and the solutions for all the positions of the sensor. Neverthe-
less, if another scan of the EC probe must be considered, the computational time is reduced since the
eigenfunctions have been already computed. The most consuming time computation lies in the resolu-
tion of the eigenvalue problem. Moreover, this time computation depends on the orders of truncation
in the Fourier domain. This truncation constitutes the real limitation of the numerical model today
because it leads to a large matrix when solving in particular the matrix equation (29). Another com-
plementary algorithms will be implemented to overcome this limitation in order to be able to increase
the number of modes according to the two directions X and Y . In contrary, the increasing of the
number of layers is not really a limitation since the S-matrix algorithm [17, 18, 5] will be implemented
in the future. In order to simulate this investigated NDT configuration, an half-geometry has been
considered in the FE software in order to reduce as much as possible the number of elements and the
size of the problem in the memory space. Even if the parameters Lx and Ly have been chosen to be
equal in this configuration, the function a(x, y) resulting from the product of the two functions a(x)
and a(y) leads to construct a real 3D surface which does not present any symmetry except along the
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Y axis. This particular configuration has been chosen in order to be allowed to address more easily
this 3D problem by using a commercial FE software. In practice, the limitation of the FE solver has
been almost reached due to the number of elements for obtaining a satisfying accuracy. However, no
symmetry has been used for solving the 3D case by the CCM method. Moreover, in the general case,
when the pancake coil is scanning the 3D surface, the problem to solve is a full 3D one.

5 Conclusion

In this paper, a new 3D numerical model based on the covariant form of Maxwell’s equation is proposed
for the first time in order to develop any simulation tools for the virtual inspection of a conductor slab
of complex shape. This fast semi-analytical 3D model is dedicated today to the computation of eddy
currents induced by a 3D sensor (with no interacting part such as ferrite or shielding) in a conducting
half space but the formalism gives a key starting point for solving efficiently more complex situations
in the future. The single interface air-conductor is characterized by a 3D arbitrary surface described
by a 2D analytic function a(x, y). In a clever new system of coordinates, tangential components of
the electromagnetic field are expressed from two longitudinal components of the field E3 and H3.
These two components both satisfy a wave equation which depends on the geometry of the rough
surface by including several coefficients of the metric tensor. By using Fourier basis functions, the
wave equation is translated in an algebraic equation which can provide eigensolutions of the structure.
The two longitudinal components of the field are then expanded in series of modal solutions and the
coefficients of the series are evaluated by satisfying the boundary condition at the interface. The main
advantage of this approach lies in the fact that the boundary condition can be written analytically
without requiring any mesh. Once the coefficients of the modal expansion are evaluated, the tangential
components of the field are reconstructed in the spatial domain in order to compute the response of
the EC probe. The numerical implementation coming from this formalism in the Fourier Domain leads
particularly to an efficient computation of the response of the sensor even if there is a great number
of points during the scan. Thanks to this 3D formalism, this 3D numerical model will be extended
relatively easily to stratified media by implementing the S-matrix algorithm which has been previously
and successfully implemented [5, 6] for 2D geometries of the workpiece. This is the main extension
of the code we expect to develop in the future. Nevertheless, this model presents some drawbacks
which must be overcome: in particular the number of modes. Indeed, the size of the eigenproblem to
solve strongly depends on the number of modes in the expansion. The limitation in the memory space
can have an impact today on the roughness of the 3D surface. Some developments will be necessary
to overcome this difficulty. A convergence study will be addressed in a future paper depending on
the roughness of the profile. Nevertheless, some 3D NDT geometries of interest can be addressed
today without applying any symmetry condition as this is the case for the FE method. The time
computation remains relatively short in comparison to FE computations. The accuracy of the model
is also satisfying without increasing the number of modes since the convergence of the method is
starting to be reached. The choice of other basis functions such as splines [19] is already envisaged in
order to reduce drastically the number of modes which are necessary for the description of the fields
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and the 3D profile.
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