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Abstract
We measure the quantum fluctuations of a pumped nonlinear resonator, using a superconducting

artificial atom as an in-situ probe. The qubit excitation spectrum gives access to the frequency and

temperature of the intracavity field fluctuations. These are found to be in agreement with theoretical

predictions; in particular we experimentally observe the phenomenon of quantum heating.

PACS numbers: Valid PACS appear here
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A resonator in which a nonlinear medium is inserted has rich dynamics when it is driven

by an external pump field [1]. In the case of a Kerr medium, the field amplitude inside

such a Kerr nonlinear resonator (KNR) switches from a low to a high value when the

pump reaches a certain threshold, a phenomenon known as bistability in optics [2] and

bifurcation in the microwave domain [3]. This hysteretic transition between two dynamical

states is a stochastic process triggered by fluctuations around the steady-state pumped

oscillations. Given the potential applications for low-power all-optical logical elements such

as switches and transistors [4], a quantitative understanding of these fluctuations governing

the sharpness of the transition, and therefore the device performance, is highly desirable

[5, 6]. In a KNR operated in the quantum regime [7], field fluctuations are mainly due to

spontaneous parametric down-conversion (SPDC) [8–10] of pairs of photons at the pump

frequency ωp into pairs of photons, one at the characteristic pumped-KNR frequency ω̃c and

the other at the complementary idler frequency ωi = 2ωp − ω̃c. The mode at ω̃c therefore

acquires a thermal population with an effective temperature that depends on the pump

frequency and power even when the electromagnetic bath to which it is coupled is at zero

temperature, a central theoretical prediction known as quantum heating that remains to be

tested [7, 11–13].

Up to now, experiments in the optical or microwave domain have only measured the

spectrum of the field radiated by a pumped KNR [14]. In this work, we access the intra-

resonator field fluctuations by inserting a two-level system (TLS) inside the KNR and using

it as an absolute spectrometer and thermometer, as illustrated in Fig. 1a. The experiment

is performed in the microwave domain at millikelvin temperatures using superconducting

Josephson circuits. The KNR is a coplanar waveguide resonator with an embedded Joseph-

son junction [15, 16], and the TLS is a transmon qubit [17] (see Fig. 1b). By measuring the

qubit absorption spectrum while pumping the KNR, we obtain a quantitative agreement

with theoretical predictions on quantum heating.

We start with a rapid summary of the relevant theoretical results regarding the quantum

fluctuations of a KNR - more details can be found in [5, 7, 11, 13, 18–20]. The KNR, driven by

a field of power Pp and frequency ωp, is modelled in the frame rotating at ωp by the Hamilto-

nian

H̄c/~ = ∆pā
†ā+ K

2
ā†2ā2 + K′

3
ā†3ā3 +(iεpā

†+H.c). with ∆p = ωc−ωp, ωc the KNR resonance

frequency in its linear regime, ā and ā† the KNR field annihilation and creation operators,
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εp =
√
κPp/~ωp the driving amplitude, κ the resonator energy damping rate, and K and K ′

the Kerr nonlinear constants derived from circuit parameters [16, 21]. The steady-state solu-

tion for the dimensionless cavity field amplitude α is obtained from the corresponding master

equation yielding
(
Ωκ

2
+K|α|2 +K ′|α|4 − iκ

2

)
α = −iεp with Ω = 2Q∆p/ωc the reduced

pump frequency [18, 20], and Q = ωc/κ the resonator quality factor. For Ω >
√

3 and Pp

larger than the critical power Pc = κ2

3
√

3|K|~ωp this equation admits two stable solutions αL,H
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Fig. 1. (a) Optical analogue of the experiment: a Perot Fabry cavity with resonance frequency c and
quality factor Q has a Kerr non linearity K. When pumping it with a coherent field at frequency p,
spontaneous parametric down-conversion produces light at the cavity dressed mode frequency ’c and at
the complementary idler frequency i. An in-situ atomic probe is used as an absolute spectrometer and
thermometer to characterize this quantum heating of the dressed mode. (b) Actual experiment: the cavity
is a microwave superconducting /2 coplanar waveguide resonator, the Kerr medium a simple Josephson
junction inserted in it, and the probe an artificial Josephson atom of the transmon type placed at an
electric antinode. A circulator is used to separate the input and output signals. (c) Stability diagram of
the resonator in the pump power Pp and frequency p plane (in reduced units – see text): L, H, and B
denotes regions where the amplitude of the driven oscillations is low, high, and bistable, respectively.
The P+ line is where the oscillation switches from L to H when Pp is increased. (d) Dressed mode
frequency ’c when increasing Pp at =-3 (along the arrows of panel c).
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FIG. 1. (a) Optical analogue of the experiment: a Fabry-Pérot cavity with resonance frequency ωc,

quality factor Q, and Kerr non-linearity K, is pumped at frequency ωp. Photons are produced at

the cavity dressed mode frequency ω̃c and at the idler frequency ωi by SPDC of pump photon pairs.

An in-situ atomic probe is used as an absolute spectrometer and thermometer to characterize

this quantum heating of the dressed mode. (b) Actual experiment: the cavity is a microwave

superconducting λ/2 coplanar waveguide resonator, the Kerr medium a Josephson junction, and

the probe a transmon artificial atom. (c) Stability diagram of the resonator in the pump power

Pp and frequency ωp plane (in reduced units, see text) : L, H, and B denotes regions where the

amplitude of the driven oscillations is low, high, and bistable, respectively. P+ is the pump power

at which the field switches from L to H when Pp is increased. (d) Dressed mode frequency ω̃c when

increasing Pp at Ω = −3 (along the arrows of panel c).
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corresponding to metastable dynamical states L and H of respectively low- and high- ampli-

tude [18]. In this bistable and hysteretic regime, the transition from L to H occurs abruptly

when ramping up the pump power at the bifurcation threshold P+(Ω). The corresponding

stability diagram is shown in Fig. 1c.

We consider here the quantum fluctuations of the intra-resonator field around its steady-

state value α, in the regime where they are too weak to induce switching to the other

dynamical state within the experiment duration. This justifies linearizing H̄c around α, by

writing ā = α + a and keeping only terms quadratic in a. Following [20], this linearized

Hamiltonian can be diagonalized by introducing a new operator ã = µa+νa†, and rewritten

as H̃l = ∆̃pã
†ã with ∆̃p = sign(A)

√
B, A = ∆p + 2K|α|2 + 3K ′|α|4, and B = A2 − (K +

2K ′|α|2)2|α|4. In the laboratory frame, intra-cavity field fluctuations are thus described as

excitations of a harmonic dressed mode of resonance frequency ω̃c = ωp+∆̃p that depends on

the pump amplitude and frequency [22]. We note the eigenstates of this effective oscillator

|ñ〉 = (ã†)n
∣∣0̃〉 /√n! . As shown in Fig. 1d for the case where K,K ′ < 0 and ∆p > 0 as in

our experiment, the dressed frequency ω̃c is equal to ωc at low pump power, then decreases

when Pp is increased, reaching ωp when Pp = P+, which causes the field to jump to its

high amplitude value and ω̃c correspondingly to jump well below ωp. The dressed mode

is damped at the same rate κ as the KNR, but towards an equilibrium steady-state at a

finite effective temperature Teff corresponding to a mean number of excitations 〈ñ〉 equal to

|ν|2, even if the bath physical temperature is zero [20]. Physically this thermal population

is caused by SPDC of pairs of pump photons at ωp into correlated photons at frequencies

ω̃c and ωi = 2ωp − ω̃c, emitted in the dressed mode and in the measuring line respectively;

the apparent thermal character of the intraresonator field is obtained when neglecting the

correlations between the ω̃c and the ωi photons. Note that this analysis is only valid if

B > 0, a condition verified sufficiently far from the bifurcation threshold, as is the case here.

In our experimental test of these predictions, the KNR is a superconducting coplanar

waveguide resonator including a Josephson junction with frequency ωc/2π = 6.4535GHz,

Kerr constants K/2π = −625 kHz and K ′/2π = −1.25 kHz, and damping rate κ/2π =

10MHz (see Fig. 1d) [16]. It is capacitively coupled with strength g/2π = 44MHz to a

superconducting qubit of the transmon type with frequency ωge/2π = 5.718GHz. Because

of the large qubit-resonator detuning, their interaction can be described in the so-called

dispersive limit [23]. Resonator and qubit can be driven by microwave pulses applied to the
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Fig. 2. Measurement of the field radiated by the nonlinear resonator pumped at p, when the probe
frequency ge (see Fig.1) is strongly detuned from p. (a) Experimental setup: the pump tone is switched
on and off every 2.5 ms; the reflected and radiated signals are amplified and mixed down at p, yielding
two quadratures I(t) and Q(t) that are digitized and Fourier transformed; the total voltage spectral
densities SON,OFF(=|-p|) for the two pump states are then computed. (b) Example of radiated noise
spectrum SON -SOFF obtained for a reduced pumped frequency  = 2.8 and a pump power Pp = -110 dBm.
(c) Radiated noise spectrum SON - SOFF () as a function of Pp. The dashed curve is the calculated ’c–
p (Pp). The vertical dotted line indicates the cut shown on panel b).
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FIG. 2. Measurement of the field radiated by the KNR pumped at Ω = 2.8. (a) Experimental setup:

the pump tone, sent through a line with attenuators (A), is switched on and off every 2.5ms; the

reflected and radiated signals are amplified and mixed down at ωp, yielding two quadratures I(t) and

Q(t) that are digitized and Fourier transformed; the total voltage spectral densities SON,OFF(∆ω =

|ω − ωp|) for the two pump states are then computed. (b) Radiated noise spectrum SON − SOFF

for Pp = −110 dBm. (c) Radiated noise spectrum as a function of Pp. The dashed curve is the

calculated ∆̃p = ω̃c − ωp(Pp). The vertical dotted line indicates the cut shown on panel b.

resonator input. The qubit can be readout in a single shot by driving the resonator close to

its bifurcation threshold P+(Ω) in order to map the qubit states |g〉 and |e〉 to the L and H

states, respectively [24].

A first method to investigate the field fluctuations of the KNR pumped at ω̃c is to measure

the field radiated into the measurement line at frequencies ω̃c(Pp) and 2ωp − ω̃c(Pp), as

reported recently [14, 25]. Its noise spectrum, measured using the setup of Fig. 2a [26],

shows a peak at a Pp-dependent frequency (see Figs. 2b-c). All the sample parameters

being known from earlier measurements [16], the theoretical ω̃c(Pp) curve can be computed

without adjustable parameters and is shown in Fig. 2c. Except for avoided crossings at

∆̃p/2π ≈ 40 and 70MHz of unknown origin, the agreement is quantitative. This shows that

the additional noise is indeed generated by the pumped KNR at ω̃c(Pp). However these
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FIG. 3. Sideband spectroscopy of the qubit while pumping the resonator with varying power Pp at

Ω = 3.9. (a) Experimental setup: a spectrocopic pulse is applied at ωq with power Pq during the

pumping; the pump and spectrocopy tones are then switched off and the qubit is measured using

a third pulse at ωr with a power close to the bifurcation threshold P+. The measured phase of

the reflected pulse yields the qubit state and repeating the sequence yields the qubit excited state

probability p|e〉.(b) Measured (top) and calculated (bottom) 2D plots showing the p|e〉(ωq) spectra

as a function of Pp (bottom axis), also expressed in units of the bifurcation threshold P+ (top

axis). (c) Experimental (dots) and analytical (lines) spectra at a power Pp = −96 dBm (dashed

lines in b), for powers Pq = -131, -120 and -115 dBm (from left to right). (d) Energy diagrams

showing the transitions involved in the red sideband peak (Stokes), central peak, and blue sideband

(anti-Stokes).

measurements are unable to determine the effective temperature of the mode ω̃c from which

the measured photons are leaking, which is the key quantity of the theory discussed above.

A two-level system such as the transmon qubit is an ideal in-situ probe of quantum
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heating, because it acts as an absolute spectrometer and thermometer for a given quantum

noise source [27]. We measure the temperature of the ω̃c mode while keeping the qubit

and KNR far detuned by using a method called sideband spectroscopy, which is routinely

used in ion-trapping experiments [29, 30] and has also been applied recently to mechanical

oscillators [31]. Indeed, starting from the system in state |g, ñ〉 it is possible to drive a

transition to
∣∣∣e, ñ+ 1

〉
by irradiating the qubit at frequency ωge + ω̃c (so-called Stokes

sideband), or to
∣∣∣e, ñ− 1

〉
provided n > 0 by irradiating the qubit at |ωge − ω̃c| (so-called

anti-Stokes sideband) [32–34]. In the case of a transmon qubit, these transitions need to

be driven with two photons of arbitrary frequency provided their sum (resp. difference)

satisfies the Stokes (resp. anti-Stokes) sideband resonance condition [35]. Given the sideband

transition matrix element dependence on n, one can show that the average photon number

〈ñ〉 = 1/[exp(~ω̃p/kTeff) − 1] is equal to r/(1 − r) with r ∈ [0, 1] the anti-Stokes/Stokes

sideband peak amplitude ratio [30]. Measurement of the qubit absorption spectrum, yielding

r, therefore corresponds to a direct and absolute measurement of Teff .

Sideband spectroscopy is performed using the setup shown in Fig. 3a. Once a steady-state

pump field is established in the resonator, a spectroscopy pulse is applied to the qubit at

fixed power Pq and varying frequency ωq. The pump tone provides one of the two photons

needed to drive the sideband transitions, and the spectroscopy tone provides the second

photon whenever ωq matches the Stokes (resp. anti-Stokes) sideband resonance condition

ωq + ωp = ωge + ω̃c(Pp) (resp. ωp − ωq = ω̃c(Pp) − ωge). The experimental sequence ends

by reading out the qubit state 200ns after both pulses are switched off, long enough for the

KNR field to decay but shorter than the qubit relaxation time T1 ≈ 700ns [16]; repeating

this sequence ≈ 104 times yields the qubit excited state probability p|e〉.

Typical data are shown in Fig. 3c at Ω = 3.9 and Pp = −96 dBm such that the KNR is in

the high oscillation amplitude state H. At low spectroscopy power Pq, only one Lorentzian

peak is visible, corresponding to the qubit frequency ac-Stark shifted by the steady-state

intraresonator field with mean photon number 〈nH〉 = |αH |2 at ωp [16, 36]. Increasing the

spectroscopy power, we observe the appearance of two satellite peaks around ωge, with a

separation of 31MHz that closely matches the value of ∆̃p = ωp − ω̃c(Pp), already known

without any adjustable parameters as explained above. When Pp is varied, this separation

also quantitatively varies as expected from the ω̃c dependence on Pp, as shown in Fig. 3b.

This establishes that the satellite peaks are indeed the sideband transitions. The anti-Stokes
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average.
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FIG. 4. Quantum heating of the pumped resonator mode ω̃c above bifurcation: Quantity r/(1− r)

with r being the ratio of blue to red sideband peak heights deduced from the experimental (squares)

and theoretical (dots) qubit spectra of Fig. 3b, as a function of the pump power Pp (bottom axis).

The calculated average number 〈nH〉 of photons in the pump mode is indicated on the top axis.

In a simple theoretical picture r/(1− r) is the average photon number 〈ñ〉 in the ω̃c mode, shown

here as a dashed and a solid line for the L and H resonator states. The corresponding effective

temperature Teff is indicated on the right axis.

sideband being observable and of smaller amplitude than the Stokes sideband indicates that

the temperature of the dressed mode is finite, as discussed in more details below.

To be more quantitative, we have performed a detailed theoretical analysis [20] of the

coupled qubit-KNR system that will be presented elsewhere [37], and which yields analytical

approximate expressions for the qubit sideband spectrum. The predictions, calculated with

a global attenuation factor on the spectroscopy power Pq as the only adjustable parameter,

are also shown in Fig. 3b-c for different Pq; they agree quantitatively with the data. Since

these calculations are done at zero bath temperature, this is a first clear indication that the

population of the mode at ω̃c is only due to SPDC and is therefore of quantum origin.

Assuming that the field in the dressed mode ω̃c has the statistics of a thermal field as

predicted theoretically, we now extract an experimental occupation number of the dressed

mode from the relative height of the two sideband peaks, and translate it into an effective

temperature Teff . For this, each spectrum of Fig. 3b is fitted to a sum of three Lorentzians

of adjustable frequency, width and height, yielding the ratios r of the anti-Stokes to Stokes

sideband height. Figure 4 shows the comparison between the experimental occupation num-
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ber r/(1−r) and 〈ñ〉 calculated without any adjustable parameter. The data agree fairly well

with the prediction, demonstrating that the average photon number in the dressed mode is

indeed |ν|2 as predicted by theory (see chapter 7 in [1]). More precisely, we estimate that the

residual thermal field at ω̃c cannot be responsible for more than 20% of the observed signal.

Our data show that the dressed mode occupation number and temperature are maximum

near the bifurcation threshold P+ and decreases with increasing pumping power and occu-

pation number 〈nH〉 at ωp. This constitutes additional evidence that the measured thermal

field is not due to a trivial heating caused by the microwave pulses. We also stress that these

results do not rely on any calibration of the measurement lines or temperature. Finally, we

also show in Fig. 4 the quantity r/(r−1) derived from the analytical expression that yielded

the theoretical spectra shown in Fig. 3: it is in agreement with both the experimental data

and the simple formula for the KNR effective temperature. Additional data can be found

in the Supplementary Information [20] taken on another sample with different parameters,

with which similar results have been obtained.

In conclusion, we have probed the quantum fluctuations of a pumped nonlinear resonator

with an embedded superconducting qubit, bringing experimental evidence of quantum heat-

ing. Future directions include establishing the link between quantum heating and the switch-

ing rates at the bistability threshold [11], and testing the thermal character of the dressed

resonator mode by performing its quantum state tomography with the qubit [38]. In general

our experiments demonstrate that detailed and quantitative tests of all theoretical predic-

tions regarding nonlinear resonators in the quantum regime are enabled by the progress of

superconducting circuits.
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SUPPLEMENTARY INFORMATION FOR “QUANTUM HEATING OF A NON-

LINEAR RESONATOR PROBED BY A SUPERCONDUCTING QUBIT”.

THEORY OF QUANTUM FLUCTUATIONS OF A NONLINEAR RESONATOR

Our goal here is to give a self-contained account of the theory of quantum fluctuations of

a nonlinear resonator.

Driven Kerr shifted cavity: linearized description

Consider a Kerr nonlinear cavity with frequency ωc, Kerr coefficients K and K ′, and

driven by a field at frequency ωp and amplitude εp. The Hamiltonian describing the driven

cavity is

H̄c = ~ωcā†ā+ ~
K

2
ā†2ā2 + ~

K ′

3
ā†3ā3 + 2~εp sin(ωpt)(ā+ ā†) (1)

with ā and ā† the KNR field annihilation and creation operators.

In a frame rotating at ωp and under the rotating wave approximation, we find

Hc = ~∆pā
†ā+ ~

K

2
ā†2ā2 + ~

K ′

3
ā†3ā3 + ~(−iε∗pā+ iεpā

†), (2)

where we have defined ∆p = ωc−ωp. Allowing the drive amplitude εp to be complex in this

equation allows for different choices of drive phase. Including cavity damping κ = ωc/Q (Q

being the cavity quality factor), the master equation in this frame is then

ρ̇ = −i[Hc, ρ]/~ + κD[ā]ρ, (3)

where

D[c]ρ = cρc† − c†cρ/2− ρc†c/2. (4)

In the limit in which the linearization is appropriate, the cavity is not too far from being

in a coherent state. It is then useful to define new operators a, a† for the cavity such that

ā = α + a, (5)

where α is a complex number which will be shown later to correspond to the coherent state

amplitude in the resonator. The operator a describes fluctuations about this coherent state,

and the contribution to the photon number from this state should be small compared to |α|2

for the linearization to be a valid approximation.
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Making this replacement in Hc, we find the linearized Hamiltonian

Hl = ~
(
∆ + 2K|α|2 + 3K ′|α|4

)
a†a+~

(
K

2
α∗2 +K ′|α|2α∗2

)
a2 +~

(
K

2
α2 +K ′|α|2α2

)
a†2,

(6)

where the value of α is chosen such that all terms linear in a, including those arising from the

dissipation, cancel (see below). We have also disregarded terms that involve higher powers

of a and a† on the grounds that the effects of these terms will be small since they involve

lower powers of α which is assumed to be large compared to one.

Bistable steady state amplitudes

The value of α is found by requiring that, after substituting ā = α + a (Eq. 5) in the

master equation Eq.3, the terms proportional to a have a zero coefficient. We first give the

term linear in a originating from the Hamiltonian part of the master equation:

~
(
−iε∗p + ∆α∗ +K|α|2α +K ′|α|4α

)
. (7)

In the dissipative term of the master equation, the substitution Eq. 5 leads to

D[ā]ρ = D[a]ρ− i[i~κ
2

(α∗a− αa†), ρ]/~, (8)

the last term of which contributes to the prefactor of a. Gathering all the terms linear in a

leads to α verifying

iε∗p = ∆α∗ +K|α|2α∗ +K ′|α|4α∗ + i
κ

2
α∗. (9)

Introducing the reduced variable Ω = 2Q∆p/ωc this can be rewritten

− iεp =
(

Ω
κ

2
+K|α|2 +K ′|α|4 − iκ

2

)
α, (10)

as given in the main text.

Diagonalizing the linearized Hamiltonian

In order to understand the linearized spectrum of the cavity we diagonalize the linearized

Hamiltonian
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Hl = ~
(
∆ + 2K|α|2 + 3K ′|α|4

)
a†a+~

(
K

2
α∗2 +K ′|α|2α∗2

)
a2+~

(
K

2
α2 +K ′|α|2α2

)
a+2.

(11)

We wish to diagonalize this by means of a Bogoliubov style squeezing transformation by

defining a new “lowering” operator

ã = µa+ νa† (12)

and its corresponding conjugate

ã† = µ∗a† + ν∗a. (13)

Simple calculation shows that

[ã, ã†] = 1 (14)

if and only if the condition

|µ|2 − |ν|2 = 1 (15)

holds.

Consider now the Hamiltonian

H̃l = ~∆̃pã
†ã. (16)

We will show that for a suitable choice of µ and ν this Hamiltonian corresponds to Hl plus

a constant.

Without loss of generality we will be able to choose µ to be real. This constraint will hold

identically if we define µ and ν in terms of hyperbolic functions µ = cosh r, ν = e2iθ sinh r.

Again without loss of generality, we may also require that r ≥ 0 and hence sinh r ≥ 0.

The most straightforward way to proceed is to write the new Hamiltonian in terms of the

original operator and match coefficients :

H̃l = ~∆̃p

(
µ∗a† + ν∗a

) (
µa+ νa†

)
(17)

= ~∆̃p

(
|µ|2 + |ν|2

)
a†a+ ~∆̃p

(
µ∗νa†2 + µν∗a2

)
+ ~∆̃p|ν|2. (18)

We can see that this is equal to Hl up to a constant as long as we can choose

∆̃p cosh(2r) = ∆ + 2K|α|2 + 3K ′|α|4, (19)
1

2
∆̃p sinh(2r)e−2iθ =

(
K

2
+K ′|α|2

)
α∗2. (20)
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Notice that the first equation determines the sign of ∆̃p since cosh is positive: ∆̃p must

have the same sign as ∆ + 2K|α|2 + 3K ′|α|4.

Looking at the second equation, we will define α = |α|eiθc and then we can conclude

that exp(−2iθ) = ± exp(−2iθc). Recalling that we have chosen r ≥ 0 implying that sinh r

is positive, the plus sign is obtained when ∆̃p has the same sign as K and the minus sign

otherwise. In the former case we have θ = θc and in the latter θ = θc + π/2. In either case

the squeezing axis rotates with the phase of the cavity amplitude.

By taking the ratio of the absolute values of these equations we find an expression for r

tanh 2r =
|K + 2K ′|α|2||α|2

|∆ + 2K|α|2 + 3K ′|α|4|
, (21)

while the magnitude of ∆̃p can be inferred from squaring and substracting the two equations:

∆̃2
p = (∆ + 2K|α|2 + 3K ′|α|4)2 − (K + 2K ′|α|2)2|α|4. (22)

The regime of interest for us is where (∆ + 2K|α|2 + 3K ′|α|4)2 − (K + 2K ′|α|2)2|α|4 > 0

in which case ∆̃p is real and the dynamics of the KNR fluctuations can indeed be mapped

onto those of a damped harmonic oscillator of frequency ∆̃p in the rotating frame. This is

the case in most of the KNR phase space, except very close to the bistability threshold, in

which case the fluctuations are instead amplified and the system behaves as a parametric

amplifier of large gain. In this work we only focus on the regime where ∆̃p is real.

In this regime we can thus interpret the system as a cavity of frequency ω̃c with ω̃c =

∆̃p + ωp.

Approximate master equation in the linearized description : quantum heating

In the regime where κ � ω̃c, we can move into a new interaction picture at frequency

ω̃c. In this interaction picture, the Hamiltonian is zero and only the dissipative terms in the

master equation contribute. We have so far written these terms only as a function of a but,

when we express them in terms of ã using the inverse transform mentioned above and move

into the interaction picture, we find that some terms have a time dependence at frequency

2∆̃p. In the limit ∆̃p � κ in which we are working (corresponding to the resolved-sideband

limit), one can make a rotating wave approximation and average these terms to zero. The
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resulting master equation is

ρ̇ = κ(|ν|2 + 1)D[ã]ρ+ κ|ν|2D[ã†]ρ. (23)

This is the master equation for an oscillator coupled to a thermal bath with energy decay

rate κ and thermal expectation number |ν|2. The steady state of the cavity mode is thus a

thermal state with 〈ã†ã〉 = |ν|2. It may seem strange to have a thermal state as a steady

state. Physically the quantum state in this interaction picture approaches a squeezed state

with some periodic time dependence of the phase of the squeezing. This variation is so rapid

that, as long as we respect the regime of validity of the rotating wave approximation, we can

replace it with a time averaged state which is thermal. This phenomenon has been coined

"‘quantum heating"’ [1–3].

ANALYTICAL FORMULA FOR THE SIDEBAND SPECTRUM

The analytical results presented in Fig. 3 of the paper were obtained using a more com-

plete theory than that presented above. This theory is based on the one developped in

Ref. [4], and will be developped further in Ref. [5]. It includes effects from the resonator

on the qubit such as Purcell decay, measurement-induced dephasing [6] and dressed dephas-

ing [7] and decay, as well as Lamb and ac-Stark shift of the qubit transition frequencies. It

also includes effects from the qubit on the resonator, such as a qubit-state dependent pull

of the resonator’s frequency leading to different pointer states αi of the resonator for each

qubit state |i〉. The theory starts from a master equation description of a qubit coupled

to a nonlinear resonator driven both with a pump εp and spectroscopy εs drives. Through

successive transformations [5], we transform the master equation into a form in which the

resonator can be adiabatically eliminated, yielding a reduced qubit master equation given

by

ρ̇q = −i[H, ρq] + γ̃↓D[σ−]ρq + γ̃↑D[σ+]ρq +
γ̃ϕ
2
D[σz]ρq, (24)

where

H =
δ

2
σz + g0(αsσ+ + α∗sσ−). (25)

Here, αs is the intra-resonator field created by the spectroscopy drive of amplitude εs at

ωs = ω̃1,0 − δ, close to the qubit transition frequency. The dephasing rate γ̃ϕ includes the
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intrinsic qubit dephasing as well as the measurement-induced dephasing [5]. The up and

down rates are given by

γ̃↓ = γ′′′↓ + |g0αsf(αi, ν, µ)|2
[
(L(−δ) + L(δ)) |ν|2 + L(−δ)

]
(26a)

γ̃↑ = γ′′′↑ + |g0αsf(αi, ν, µ)|2
[
(L(−δ) + L(δ)) |ν|2 + L(δ)

]
, (26b)

where γ′′′↓,↑ include Purcell relaxation and dressed dephasing and are obtained in Ref. [4] and

L(δ) is a Lorentzian of full-width at half-maximum κ given by

L(δ) ≈ κ/2

κ2/4 + (∆̃p + δ)2
. (27)

In this equantion ∆̃p is given by Eq. 22 and f(αi, ν, µ) is a unit-less function of the squeezing

coefficients and of the distinguishability of the pointer states α1 − α0.

The stationnary solution of the reduced master equation is analytical and yields

P (|1〉) =
〈Π1,1〉eq (γ̃2

2 + δ2) + 2γ̃2 |g0αs,0|2 /(γ̃↑ + γ̃↓)[(
γ̃2

2 + 4γ̃2 |g0αs,0|2 /(γ̃↑ + γ̃↓)
)

+ δ2
] , (28)

where

〈Π1,1〉eq =
γ̃↑

γ̃↑ + γ̃↓
, (29)

and γ̃2 = γ̃ϕ + (γ̃↑ + γ̃↓)/2. Equation (28) was used to plot the analytical data presented in

Fig. 3 of the paper.

In the low spectroscopy power regime, the effective rates γ̃↑,↓,2 are independant of the

spectroscopy frequency, and the spectrum yields a single line, centered at δ = 0, with a

minimal width of γ̃2. In the high spectroscopy power regime, αs becomes significant and

the central line is power-broadened. Moreover, the rates acquire a frequency-dependent

structure. If we focus on the well-resolved sidebands limit, that is δ > γ̃2, the dominant

term yields P (|1〉) ≈ 〈Π1,1〉eq. One can then easily compute the blue to red sidebands ratio

of amplitude simply with

〈Π1,1〉eq

∣∣∣
δ=∆̃p

〈Π1,1〉eq

∣∣∣
δ=−∆̃p

=
γ̃↑|δ=∆̃p

γ̃↑|δ=−∆̃p

≈

[
L(−∆̃p) + L(∆̃p)

]
|ν|2 + L(∆̃p)[

L(−∆̃p) + L(∆̃p)
]
|ν|2 + L(−∆̃p)

≈ |ν|2

|ν|2 + 1
. (30)

In the first approximation, we assumed that the up rate γ′′′↑ is negligible, while in the second

approximation, we assumed that L(−∆̃p) � L(∆̃p), which should be the case in the well

resolved sidebands limit.
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DATA FROM ANOTHER SAMPLE

To complement the data shown in Fig. 4 of the main text, we now present data showing

sideband spectroscopy of a similar sample, although with different values of the parameters.

For this sample B, ωc/2π = 6.469GHz, Q = 1040, and K/2π = 1MHz. K is determined as

explained in [6] by fitting the frequency shift (AC Stark shift) of the qubit while the KNR

is pumped. The pump frequency was chosen to be ωp/2π = 6.427GHz, corresponding to a

significantly larger Ω = 13.5 than in the main text.

Sideband spectroscopy was performed similarly to what is reported in the main text.

Data are shown in Fig.5, around the bistability threshold. Above the bistability threshold

the data are similar to the data presented in Fig.3 of the main text. Note the additional

presence of a faint fourth line at ωge + 2(ω̃c(Pp)−ωp), that corresponds to a transition from

|g, ñ〉 to
∣∣∣e, ñ+ 2

〉
, and of a narrow peak that corresponds to the two-photon excitation

of the qubit from state |g〉 to its second excited state, AC-Stark shifted by the field inside

the KNR. Below threshold (resonator in state L), the Stokes sideband is also well resolved

and visible. This was not the case in the sample discussed in the main text because the

pump frequency was much closer to the KNR frequency in these data, resulting in a smaller

separation between the Stokes sideband below trheshold and the main qubit peak (since

well below the threshold ∆̃p ≈ ωc − ωp), which made the two lines indistinguishable. Quite

remarkably, even though the Stokes sideband is clearly visible below the threshold, the anti-

Stokes sideband is invisible within our detection limit (see Fig.5). Since the ratio between

Stokes and anti-Stokes peaks directly yields the mean photon number 〈ñ〉, this sets an upper

bound on the mean photon number 〈ñ〉 present in the mode at ω̃c which is shown in Fig.5

for various pump powers (the dependence on pump power is simply due to the fact that the

height of the Stokes peak also diminishes at small pump power, whereas the noise in the

data is constant). In particular, this allows us to establish that any residual photon numbers

that might be present at ω̃c due to improper thermalization or filtering is below the lower

point of the dashed blue line in Fig.5, namely < 0.04. This is again strong evidence that the

much larger thermal photon numbers observed above threshold are genuinely of quantum

origin.

Another noteworthy feature is that the Stokes and anti-Stokes sideband position with

respect to the qubit frequency ωq are inverted at the bistability threshold, as expected
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FIG. 5. (a) (color plot) Sideband spectroscopy of sample B on both sides of the bistability threshold,

i.e. for the resonator in the L state (Pp < −105dBm) and in the H state (Pp > −105 dBm). The

expected frequency of the AC Stark-shifted main qubit peak as well as the Stokes and anti-Stokes

sidebands are shown as dashed white and black lines. (b) (red dots) Measured r/(1 − r), with

r being the ratio of the anti-Stokes to Stokes sideband peak height. Data points are shown only

above the threshold, because no measurable anti-Stokes peak is found in our data below threshold.

We show instead our detection limit, defined as nf/(1 − nf), with nf the ratio of the standard

deviation in p|e〉 to the Stokes sideband peak height, above (resp. below) threshold, as a blue (resp.

red) dashed line. The detection limit depends on the pump power because the Stokes sideband

height does. The value of 〈ñ〉 calculated without adjustable parameter is shown as full line above

(red) and below (blue) the threshold.

from the sign change of ∆̃p (see Fig.1 in the main text). Finally, the effective temperature

extracted from Fig.5a is shown in Fig.5b and is again in fair agreement with the prediction

|ν|2 calculated without adjustable parameter, both below and above the threshold.
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