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Harvesting dissipated energy with a
mesoscopic ratchet
B. Roche1,*, P. Roulleau1,*, T. Jullien1, Y. Jompol1,w, I. Farrer2, D.A. Ritchie2 & D.C. Glattli1

The search for new efficient thermoelectric devices converting waste heat into electrical

energy is of major importance. The physics of mesoscopic electronic transport offers the

possibility to develop a new generation of nanoengines with high efficiency. Here we describe

an all-electrical heat engine harvesting and converting dissipated power into an electrical

current. Two capacitively coupled mesoscopic conductors realized in a two-dimensional

conductor form the hot source and the cold converter of our device. In the former, controlled

Joule heating generated by a voltage-biased quantum point contact results in thermal voltage

fluctuations. By capacitive coupling the latter creates electric potential fluctuations in a cold

chaotic cavity connected to external leads by two quantum point contacts. For unequal

quantum point contact transmissions, a net electrical current is observed proportional to the

heat produced.
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I
n his lectures1, Feynman describes a ratchet coupled via an
axle to a paddle wheel immersed in a fluid. Because of the
Brownian motion of molecules, the paddle wheel has an equal

probability to be rotated to the right or the left. Owing to the
presence of the pawl preventing one rotation direction, say the
left, the ratchet will rotate on the right, seemingly violating
the second law of thermodynamics. The apparent contradiction is
solved and equal rotation probability restored by including
thermal fluctuations of the ratchet. However, if its temperature is
smaller than that of the fluid, unidirectional rotation becomes
possible, enabling conversion of heat into work.

In this letter, we propose a mesoscopic engine composed of two
capacitively coupled mesoscopic conductors: a cold and a hot line.
To characterize our nanoengine, we separately perform measure-
ments of both hot and cold lines. The temperature increase of the
hot line when a bias voltage is applied is measured through
Johnson–Nyquist noise of the hot reservoir. Then, we measure
the output current of the device and relate it to the temperature
difference of both lines (Supplementary Methods). We find that
the device delivers a net electrical current proportional to the
heat produced. Compared with recent realizations on the basis
of spin2,3, superconductors4,5 and graphene6, this mesoscopic
ratchet device is simple and could be scaled for application in
molecular machinery7–9.

Results
Description of the mesoscopic engine. Figure 1a shows a scan-
ning electron microscopy picture of our mesoscopic engine, which
is on the basis of a proposal described in ref. 10 (the theoretical
model is discussed in Supplementary Note 1). It consists of two
separate ‘cold’ and ‘hot’ circuit lines etched in a high-mobility

two-dimensional (2D) electron gas with two quantum point
contacts (QPCs) in each (Supplementary Figs 1 and 2). Their
temperatures are T1 and T24T1, respectively. The lower line is the
heat source: the left QPC is tuned on a conductance plateau and
DC-biased in order to generate heat and locally increase the tem-
perature. The series QPC on the right is either tuned on a plateau
or opened. To convert the heat into electrical current, it is necessary
to define a mesoscopic ratchet together with its mesoscopic pawl.
They are implemented in the upper cold circuit line. The ratchet is
a chaotic electron cavity defined between two QPCs whose pawl is
provided by breaking the symmetry of the energy-dependent
transmissions of the left and right QPCs. However, how to convert
heat to DC current? A first step is to transfer a part of the thermal
voltage fluctuations of the hot circuit into the cold cavity via the
coupling capacitance CC. The electrons in the cold cavity are not
heated up but their chemical potential experiences a random
fluctuation dU, larger than at thermal equilibrium. Then, cold
electrons entering the cavity can pick up some fluctuating energy
edU before escaping into the external circuit via the QPCs, see
Fig. 1b. If the energy dependence of the transmission of the QPCs is
different, one can show that a unidirectional current occurs
resulting from the detailed balance of electron flowing in and out
the cavity by the left and right ports. In other words, the device
generates a net current in the cold line without any applied bias.

Measurement of the hot line temperature. We now discuss how
we proceed to heat the hot circuit and measure its temperature.
We apply a DC bias Vds across the left QPC while fixing its
transmission Dh,1 between 0 and 1. The series QPC is left opened.
Joule heating with power GV2

ds=2 is produced on both sides of the
QPC within a few electron–electron inelastic scattering lengths,
with G¼Dh,12e2/h the QPC conductance (Supplementary Fig. 3).
To extract the electronic temperature Te of electrons close to the
QPC, we measure the low-frequency current noise. The power
spectral density SI is given by11:

SI Vdsð Þ ¼ 4kBTeGþ 2FG eVdscoth
eVds

2kBTe

� �
� 2kBTe

� �
ð1Þ

with kB the Boltzmann constant, Te the electronic temperature,
G the conductance of the QPC, F the Fano factor defined as
F¼

P
nDn(1�Dn)/

P
nDn (Dn the transmission of the nth

channel in the QPC) and � e the charge of the electron. The
noise contains information on the electron temperature and on
the quantum partitioning of electrons by the QPC, the so-called
shot noise. The partition statistics is characterized by the Fano
factor, which remarkably goes to zero when the QPC is tuned on
a conductance plateau. Figure 2 shows the excess shot noise
measurements (we subtract the zero bias shot) as a function of
Vds for two different transmissions D1¼Dh,1¼ 0.2 and 1. For
Dh,1¼ 0.2, we observe the partitioning noise as expected. On a
conductance plateau the second term of equation 1,
corresponding to shot-noise, is zero. The excess noise is only
due to equilibrium thermal noise or Johnson–Nyquist noise:
SI(Vds)¼ 4kBTe(Vds)G. The non-zero value of the noise
corresponds to the increase in Johnson–Nyquist noise as
function of the bias. The increase in electronic temperature
with Joule heating power is accurately described using the
Wiedemann–Franz law of electron thermal conduction
(Supplementary Note 2). This is applicable here as the gradient
of electronic temperature Te from the QPC to base temperature at
the ohmic contacts, occurs on a length of the order of the
electron–phonon energy relaxation length. Combining the Joule
power with the Wiedemann–Franz law, we expect12,13:

T2
W ¼ T2

fridgeþ
24
p2

G
Gm

1þ 2G
Gm

� �
eVds

2kB
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Figure 1 | Device structure. (a) Scanning electron microscope view of the

sample. Two lines defined by wet etching of the mesa are coupled via a

coupling capacitance CC. On the upper line (‘cold’ line) are patterned two

QPCs in series (transmissions Dc,1 and Dc,2) that will define the chaotic

cavity (potential U1). On the lower line (‘hot’ line and potential U2), a biased

QPC enables to heat the line (composed of two QPCs with transmissions

Dh,1 and Dh,2). The metallic capacitance is connected to the cavities via

ohmic contacts visible on the picture. (b) Schematic representation of the

cold line. Once cold electrons at energy E enter the cavity, they experience

voltage fluctuations and gain an energy edU. Since QPC transmissions are

tuned at two different transmissions a net current is generated.
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with Gm the total conductance linking the QPC to the ohmic
contacts and Tfridge the base temperature. In practical, we have
to consider the cooling effect of the inner ohmic contact

(see Supplementary Note 2). Within this approach, we explain
our measurements for Dh,1¼ 0.2 (red solid line in Fig. 2) and on
the plateau (blue solid line in Fig. 2). Typically, for an applied bias
of 1 mV and Dh,1¼ 1, we get DT¼T2�T1¼ 806 mK.

Conversion of heat to current. We next investigate conversion of
heat to current. A necessary condition to generate a net current is
to create an asymmetry between the two QPCs of the cold circuit
line. In a first experiment, we have tuned the second QPC at
Dc,2¼ 0.5 and have swept the first QPC transmission Dc,1

between 0 and 2. To ensure the highest temperature difference DT
between the two lines, both QPCs of the hot line are tuned on the
first plateau (in fact the second QPC shows no good conductance
plateau, which may generate a small additional noise). Then, we
increase by steps of B1 mV the applied bias Vds while sweeping
the transmission. The different traces of Fig. 3a show that the
absolute value of the current increases with Vds. It is zero when
the transmission Dc,1B0.75, that is, when the detailed balance of
input/output electrons is symmetrical. Then, the current changes
sign as expected when the symmetry of the cavity is reversed,
a hallmark of the ratchet effect. To model the current variation
and have a quantitative understanding of the ratchet effect,
we follow the semiclassical approach developed by Sothmann
et al.10. Considering the symmetry-breaking in the energy
derivatives of the transmissions of the cold line, the authors
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Figure 2 | Temperature determination. Current noise measurement as a

function of the drain source bias for two different QPC transmissions Dh of

the hot line. The noise at Vds¼0 has been subtracted. In blue Dh¼ 1, in red

Dh¼0.2 (a feedback loop on the measured differential conductance

ensures the stability of transmissions). At small bias, a QPC tuned on a

plateau is noiseless. However, at larger bias, the dissipated power combined

with the Wiedemann–Franz law implies an elevation of the temperature and

a larger Johnson–Nyquist noise (black dotted line). The experimental values

are well fitted when considering all three possible thermal anchors (blue

solid line). For Dh¼0.2, we need to consider both usual shot noise together

with this additional heating (red solid line).
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Figure 3 | Harvested current. (a) Both QPCs of the hot line are tuned on a

plateau (Dh,1¼ 1 and Dh,2¼ 1). Current measured in the cold line as a

function of the first QPC transmission Dc,1 for Dc,2¼0.5 for applied bias

voltages from 1.8 to 4.6 mV. When Dc,1B0.5, the symmetry of the cavity is

reversed and the sign of the current changes. (b) Both QPCs of the hot line

are tuned on a plateau (Dh,1¼ 1 and Dh,2¼ 1). Current measured in the cold

line as a function of the first QPC transmission Dc,1 for Dc,2¼ 1. When

temperature difference DT between the two lines is increased by applying a

larger bias on the hot line, the current is enhanced. We sweep the applied

bias from 1.8 to 4.6 mV.
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Figure 4 | Current map. (a) Colour plot of the current measured in the cold

line as a function of the first QPC transmission Dc,1 (x axis) and the second

one Dc,2 (y axis). The applied bias on the hot line is equal to 2 mV. The first

QPC of the hot line is tuned on the first plateau, although the series QPC is

opened. When the symmetry of the barriers is inverted the sign of the

current changes. (b) Expected current as a function of both Dc,1 and Dc,2 for

CeffB0.4 pF. We recover experimental features, as a zero current along the

line Dc,1¼Dc,2, and a reverse current when the symmetry of the barriers is

changed.
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find a DC current generated by heat conversion in the cold line
given by:

Ic ¼
L
tRC

kBDT ð3Þ

with L a rectification parameter, characterizing the asymmetry
(the ratchet):

L ¼
G0c;1Gc;2�G0c;2Gc;1

G2
c;�

ð4Þ

where Gc,i¼ (e2/h)Dc,i, G0c;i ¼ e3=hð ÞD0c;i (with D0c;i the derivative

as a function of the energy @Dc;i

@E ) and Gc,S the total conductance in
parallel for the cold line. We introduce Geff an effective
conductance of the double cavity, Geff¼Gc,SGh,S/(Gc,SþGh,S)
(Gc,S¼Gc,1þGc,2, same for Gh,S) and Ceff that grows as C� 2

C
(a complete description of Ceff is given in Supplementary Note 1)
and takes into account the various capacitive couplings of the
device. For a good electrical energy-harvesting, Ceff has to be
minimized. tRC ¼ Ceff

Geff
is an effective RC time of the double cavity.

In Fig. 3a we tune Dc,2B0.5 and in Fig. 3b Dc,2B1. In the first
case, the derivative of Dc,2 is non-zero, and we would expect a
change of the current sign around Dc,1B0.5 if both QPCs were
identical, it appears instead around Dc,1B0.75 because of QPCs’
asymmetry. In the second one, the derivative is zero and we
should not have a change of the current sign in agreement with
our measurements. In both cases, we check that by increasing the
bias, we indeed enhance DT and measure a larger current.

We now discuss the measured current compared with the
expected values. We consider the case where Dh,2B1. Since both
QPCs are now tuned on a plateau, the temperature calculation is
slightly different from equation (2) (Supplementary Fig. 4 and
Supplementary Note 2). For 1 mV applied on QPCs, we get
DTB2.5 K. As expected, the temperature difference is larger
when the series QPC is tuned on the first plateau compared with
the opened case. To obtain G0c;i, one follows the saddle point
model of a QPC14 where the transmission of the nth mode can be
written Dc;nðEÞ ¼ 1=ð1þ e2pðE0;n � EÞ=‘on;x Þ where on,x is related to
the negative curvature of the saddle point potential (see
Supplementary Note 1). The lever arm ðD ¼ @E=@VgÞ is
extracted from transconductance (dGc,i/dVg) measurements
DB0.02e. Ceff is given by the geometry of the device. CC¼ 1 fF
and Cm¼CS¼ 5 fF are realistic values confirmed by electrostatic
simulations, giving Ceff¼ 105 fF. Finally, we extract IcB20 pA for
Dc,1¼ 0.5 and an applied bias of 1.8 mV, in agreement with
measurements.

In this last part, we aim to proceed to a complete mapping of
the current as a function of the two barriers of the cold line and to
compare it with the theory. To do this, we apply a 2-mV DC bias
on the hot line, we tune the first QPC on its first plateau while
opening the second QPC (doing this we make sure that we
remain on the first plateau, exclude any additional source of noise
as partition noise). Measurements are plotted in Fig. 4a. Since the
second QPC of the hot line is opened, current fluctuations are
reduced compared with the previous configuration and the
current is smaller compared with Fig. 3a (the current is at the
limit of the detection set-up sensitivity, which causes the apparent
inhomogeneity of the current map). As expected, the current is
zero when barrier transmissions are equal and maximum for the
most asymmetric configuration. We also check that the sign of
the current changes when the role of the transmission is reversed.
We compare these measurements with theoretical predictions in
Fig. 4b. We observe a good qualitative agreement with our data
taking CeffB0.4 pF, an increase attributed to the opened series
QPC in the hot line and a much bigger cavity.

Discussion
We have realized a mesoscopic Brownian ratchet. A ‘hot’ cavity is
capacitively coupled to a ‘cold’ mesoscopic ratchet composed of
two QPCs in series. Depending on the symmetry of these two
barriers, a current can be measured in the cold line. We have fully
mapped the current as a function of these two barrier transmis-
sions, in agreement with theoretical predictions. This
set-up is a prototype of a mesoscopic engine that would harvest
dissipated energy, transforming it into electrical current. In this
heat engine device, the energy-harvesting efficiency is low
Z¼ 5� 10� 5 (detailed calculations in Supplementary Note 3);
however, there is still a lot of room for improvement. First, self-
capacitances to the ground should be lowered: this can be
performed by reducing the area of the cavity. Precise calculations
of the electrostatic environment will determine the optimal
capacitance CC that will minimize the parameter Ceff.

Among the different thermoelectric heat engines15–20, a
considerable advantage of our heat engine is the absence of
direct electrical connection between hot and cold sources. This
suppresses electron thermal conduction and thus reduces the
thermal shunt between hot and cold sources. The two reservoirs
are coupled via an electric capacitance, and only phonons can
provide a thermal shunt between them. Therefore, this system is
suitable when electrical isolation is an issue for applications, as
there is not direct electrical connection between hot and cold
sources. After optimization, the mesoscopic energy-harvesting
engine may solve the heat-removal problem.

Methods
Sample fabrication and experimental set-up. Emitter and detector lines were
patterned using e-beam lithography on a high-mobility two-dimensional electron
gas formed at the GaAs/Ga1� xAlxAs heterojunction. The two-dimensional electron
gas 100 nm below the surface has a density of 1.8� 1011 cm� 2 and mobility
2.69� 106 cm2 V� 1 s� 1. Measurements were performed in cryogen-free 3He
cryostat with 300-mK base temperature (more details in Supplementary Methods).
To elevate the electronic temperature of the hot line a finite Vdc is applied on the
upper line. The resulting voltage fluctuations induce a photocurrent Iph in the
detector. We pulse Vdc at 1.5 kHz and detect the induced photocurrent using a
lock-in technique.
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