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A POSTERIORI ERROR ESTIMATION FOR THE DISCRETE

DUALITY FINITE VOLUME DISCRETIZATION OF THE LAPLACE

EQUATION

PASCAL OMNES†‡ , YOHAN PENEL†‡ , AND YANN ROSENBAUM†‡

Abstract. An efficient and fully computable a posteriori error bound is derived for the discrete
duality finite volume discretization of the Laplace equation on very general twodimensional meshes.
The main ingredients are the equivalence of this method with a finite element like scheme and tools
from the finite element framework. Numerical tests are performed with a stiff solution on highly
nonconforming locally refined meshes and with a singular solution on triangular meshes.
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1. Introduction. Let Ω be a twodimensional polygonal domain with bound-
ary Γ such that Γ = ΓD ∪ΓN and ΓD ∩ΓN = ∅. We are interested in the a posteriori
error estimation between the exact solution φ̂ ∈ H1(Ω) of the following problem

−∆φ̂ = f in Ω(1.1)

φ̂ = φd on ΓD(1.2)

∇φ̂ · n = g on ΓN(1.3)

and its numerical approximation by the finite volume method (FVM) described in [13]
and recalled in section 3. In this introduction, let us only mention that the unknowns
of this scheme are located both at the centers and at the vertices of the mesh. Equa-
tion (1.1) is then integrated both on the primal mesh, and on a dual mesh, whose
cells are centered on the vertices of the primal mesh. Finally, fluxes are computed
through the reconstruction of gradients on the so-called “diamond-cells”, which are
quadrilateral cells centered on the edges of the mesh. It has been shown that this
finite volume method may be written under an equivalent discrete symmetric positive
definite variational formulation, and has been named “discrete duality finite volume”
(DDFV) method since it can be interpreted in terms of discrete differential gradient
and divergence operators which are linked by a discrete Green formula. The main ad-
vantage of this scheme is that it may be used on fairly arbitrary meshes with possibly
distorted [17, 18] or highly nonconforming primal cells [13]. Another useful feature of
this scheme is the reconstruction of both components of the gradients (and not only
of its normal component with respect to the cell edges), which makes it easy to use
for anisotropic or non-linear (p-Laplacian type) diffusion problems (see, for example,
[4, 17, 18]). An extension of this scheme to div-curl problems as well as further defi-
nitions and properties of discrete differential operators have been presented in [12]. A
priori analysis have been given in [4, 13]. In the linear case, when the solution of (1.1)
to (1.3) belongs toH2(Ω), it has been proved in [13] that the numerical approximation
obtained by the DDFV method tends to the exact solution with the optimal order h
in the energy norm. For less regular solutions in H1+s(Ω), with s < 1, a convergence
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with order hs has been observed in [12]; this motivates the study of a posteriori error
estimators that could efficiently drive an adaptive refinement strategy.

For the system (1.1)–(1.3), a posteriori error estimations for conforming Lagrange
finite element methods (FEM) are now very common. The reader is referred to, e.g.,
[2, 5, 27] in which several types of estimators are detailed. In the residual based
estimators, the main terms are inter-element jumps of the normal components of the
gradients of the computed solution, weighted by constants whose explicit computa-
tion was performed in [7] and [28]. Efficiencies of the estimators obtained in [7] vary,
according to the problems, between 30 and 70, and between 1.5 and 3.5 if one numer-
ically evaluates eigenvalues of some vertex centered local problems, as reported in [8].
References for non-conforming FEM may be found in [3] and for mixed FEM in [29].

The case of cell-centered FVM has been less studied, on the one hand because
of their more recent use for elliptic problems, and, on the other hand, because they
generally lack a discrete variational formulation. For the basic ”four point” scheme
on so-called ”admissible” triangular meshes (see [14, 16]), Agouzal and Oudin [1] have
used the connection of this scheme with mixed finite elements to derive an a posteriori
estimator for the L2 norm of the error; this estimator is not an upper bound for the
error, but is asymptotically exact under mild hypothesis. A second estimator for this
scheme has been given by Nicaise in [20]. This estimator is shown to be equivalent
to the (broken) energy norm of the difference between the exact solution and an el-
ementwise second order polynomial (globally discontinuous) reconstructed numerical
solution. Then, in [21], Nicaise extends his ideas to the so-called ”diamond-cell” FVM
(as described in [10]) and proposes an a posteriori error estimator which may be used
if the cells of the mesh are triangles or rectangles (or tetrahedrons in dimension three).
This estimator is completely computable (no unknown constant) and its efficiency is
around 7 for the tests performed in [21]. Finally, Nicaise has extended his work to
diffusion-convection-reaction equations in [22]. More recently, Vohraĺık [31] has also
proposed a fully computable a posteriori error estimator for numerical approximations
of diffusion-convection-reaction equations by cell-centered FVM on general meshes.
The main improvement over [21, 22] is the asymptotic exactness of the error bound
which, like in [21], measures the energy norm of the difference between the exact
solution and a reconstructed, globally discontinuous, elementwise second order poly-
nomial numerical solution. Note that in [22] the reconstructed numerical solution is
globally continuous and may involve higher order polynomials on each element.

Since the computations of the estimators in [21, 31] only require fluxes on the
edges and values of the unknowns at the centers of the primal cells (quantities which
are usually the output of FVM), we may apply them to the DDFV method. However,
the treatment of meshes as general as those we employ with the DDFV scheme, like in
particular the non-conforming meshes of section 6, is impossible with the techniques
of [21] and require extra computational work with those of [31].

Let us finally mention some related results in the context of vertex-centered finite
volume (element) methods [6, 9, 19, 23, 24, 25].

In the present work, we use the equivalent discrete variational formulation of the
DDFV method and tools developed in the FEM framework to obtain a fully com-
putable a posteriori bound for the L2 norm of the error in the computed gradient:
hence, no kind of postprocessing or solution reconstruction like in [21, 31] is needed in
our approach. This error estimator is efficient under classical geometrical constraints
on a subtriangulation of the primal mesh. The main two difficulties encountered are,
on the one hand, that the basis functions on which the discrete variational formula-
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tion rely are non-conforming, and, on the other hand, that the DDFV scheme uses
two dual meshes. The first difficulty is dealt with through a Helmholtz-Hodge de-
composition of the error, an argument which is classical when the discrete solution
does not belong to H1(Ω) (see [3, 11, 21]). The conforming part of this decomposition
is treated rather classically and involves the normal jumps of the gradients through
neighboring diamond-cells. The nonconforming part of the error is treated thanks to
the orthogonality property which links the discrete gradients and curls, as shown in
[12], and involves the tangential jumps of the gradients. The second difficulty results
in the total estimator being a sum of local estimators on both the primal and dual
cells, before we distribute each dual estimator on the primal cells which intersect the
considered dual cell. Throughout all the calculations, we tried to obtain the best pos-
sible bounds, with the objective that the resulting estimator be fully computable, and
that the efficiency be as small as possible. The constants which are involved in the
computations are explicitly evaluated thanks to the expressions found in [7, 21, 28],
and there is a free parameter in the bounds, with respect to which the estimators are
numerically minimized. The resulting tests show that the efficiency of the proposed
estimator varies most of the time between 5 and 10.

The remainder of this article is organized as follows. Section 2 sets some notations
and definitions related to the meshes, to discrete differential operators and to discrete
functions. In section 3, a slightly modified version of the DDFV scheme is presented
and its equivalent discrete variational formulation is recalled. In section 4, a repre-
sentation of the error is elaborated. This is used in section 5 to find a computable
upper bound of this error. We also verify the local efficiency of the error estimators.
Section 6 is devoted to numerical tests with a regular but stiff solution and with a
singular solution. Conclusions are drawn in section 7.

2. Notations and definitions. The following notations are summarized in
Fig. 2.1 and 2.2. Let the domain Ω be covered by a primal mesh with polygonal
cells denoted by Ti, with i ∈ [1, I]. With any Ti, we associate a point Gi located in
the interior of Ti. This point is not necessarily the centroid of Ti. With any vertex Sk,
with k ∈ [1,K], we associate a dual cell Pk by joining points Gi associated with the
primal cells surrounding Sk to the midpoints of the edges of which Sk is a node.

Remark 2.1. The present construction of the dual cells slightly differs from that
given in [12, 13]. It ensures that a dual cell Pk is star-shaped with respect to the
associated node Sk, and also that when Ti ∩ Pk 6= ∅, the segment [GiSk] belongs to
Ti ∩ Pk. It also ensures that the dual cells form a partition of Ω. These facts are
crucial in the application of the Poincaré type and trace inequalities in section 5 and
when summing the contributions of all dual cells into the global a posteriori bound.

With any primal edge Aj with j ∈ [1, J ], we associate a diamond-cell Dj obtained
by joining the vertices Sk1(j) and Sk2(j) of Aj to the points Gi1(j) and Gi2(j) associated
with the primal cells that share Aj as a part of their boundaries. When Aj is a bound-
ary edge (there are JΓ such edges), the associated diamond-cell is a flat quadrilateral
(i.e. a triangle) and we denote by Gi2(j) the midpoint of Aj (thus, there are JΓ such
additional points Gi). The unit normal vector to Aj is nj and points from Gi1(j) to
Gi2(j). We denote by A′

j1 (resp. A′
j2) the segment joining Gi1(j) (resp. Gi2(j)) and

the midpoint of Aj . Its associated unit normal vector, pointing from Sk1(j) to Sk2(j),
is denoted by n′

j1 (resp. n′
j2). In the case of a boundary diamond-cell, A′

j2 reduces to
{Gi2(j)} and does not play any role. Finally, for any diamond-cell Dj, we shall denote
by Miαkβ

the midpoint of [Giα(j)Skβ(j)], with (α, β) ∈ {1; 2}2. With nj , n′
j1 and n′

j2,
we associate orthogonal unit vectors τ j , τ

′
j1 and τ

′
j2, such that the corresponding
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Fig. 2.1. A primal mesh and its associated dual mesh (left) and diamond-mesh (right).
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Fig. 2.2. Notations for an inner diamond-cell (left) and a boundary diamond-cell (right).

orthonormal bases are positively oriented. For any primal Ti such that Aj ⊂ ∂Ti, we
shall define nji := nj if i = i1(j) and nji := −nj if i = i2(j), so that nji is always
exterior to Ti. With nji, we associate τ ji such that (nji, τ ji) is positively oriented.
Similarly, when A′

j1 and A′
j2 belong to ∂Pk, we define (n′

jk1, τ
′
jk1) and (n′

jk2, τ
′
jk2) so

that n′
jk1 and n′

jk2 are orthogonal to A′
j1 and A′

j2 and exterior to Pk.

For the sake of simplicity, the boundary ΓN is supposed to be simply connected,
but this hypothesis is in no matter restrictive. By a slight abuse of notations, we shall

write k ∈
◦
ΓD (resp. Γ̄D,

◦
ΓN and Γ̄N ) if the vertex Sk belongs to the interior of ΓD,

relatively to Γ (resp. to the closure of ΓD, to the interior of ΓN and to the closure
of ΓN). Identically, we shall write i ∈ ΓD (resp. i ∈ ΓN , j ∈ ΓD and j ∈ ΓN ) if
Gi ∈ ΓD (resp. Gi ∈ ΓN , Aj ⊂ ΓD and Aj ⊂ ΓN ).

In the DDFV scheme, we associate scalar unknowns to the points Gi and Sk and
twodimensional vector fields to the diamond-cells. Hence the following definitions

Definition 2.2. Let φ = (φT
i , φ

P
k ) and ψ = (ψT

i , ψ
P
k ) be in R

I × R
K . Let

u = (uj) and v = (vj) be in (R2)J . We define the following scalar products

(φ, ψ)T,P :=
1

2

(

∑

i∈[1,I]

|Ti|φT
i ψ

T
i +

∑

k∈[1,K]

|Pk|φP
k ψ

P
k

)

,(2.1)

(u,v)D :=
∑

j∈[1,J]

|Dj |uj · vj .(2.2)
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We shall also need the following trace operator and boundary scalar product

Definition 2.3. Let φ = (φT
i , φ

P
k ) be in R

I+JΓ ×R
K. For any boundary edge Aj ,

with the notations of Fig. 2.2, we define φ̃j as the trace of φ over Aj by

φ̃j =
1

4

(

φP
k1(j) + 2φT

i2(j) + φP
k2(j)

)

.(2.3)

Let φ = (φT
i , φ

P
k ) be in R

I+JΓ × R
K and let w = (wj) be defined (at least) on the

boundary ΓD, or on ΓN or on Γ. We define the following boundary scalar products

(w, φ̃)ΓD ,h =
∑

j∈ΓD

|Aj |wj φ̃j , (w, φ̃)ΓN ,h =
∑

j∈ΓN

|Aj |wj φ̃j ,(2.4)

(w, φ̃)Γ,h := (w, φ̃)ΓD ,h + (w, φ̃)ΓN ,h.

We recall here the discrete differential operators which have been constructed on
fairly general two dimensional meshes, and some of their properties. For more details
and for the proofs, see [12, 13].

Definition 2.4. Let u = (uj) be in (R2)J . We define its divergence and (scalar)
curl on the primal and dual cells by

(

∇T
h · u

)

i
:=

1

|Ti|
∑

j∈∂Ti

|Aj |uj · nji,

(

∇P
h · u

)

k
:=

1

|Pk|





∑

j∈∂Pk

(

|A′
j1|uj · n′

j1k + |A′
j2|uj · n′

j2k

)

+
∑

j∈∂Pk∩Γ

|Aj |
2

uj · nj



 ,

(

∇T
h × u

)

i
:=

1

|Ti|
∑

j∈∂Ti

|Aj |uj · τ ji,

(

∇P
h × u

)

k
:=

1

|Pk|





∑

j∈∂Pk

(

|A′
j1|uj · τ ′

j1k + |A′
j2|uj · τ ′

j2k

)

+
∑

j∈∂Pk∩Γ

|Aj |
2

uj · τ j



 .

We stress that ∂Pk ∩ Γ is non-empty if and only if Sk ∈ Γ.

Definition 2.5. Let φ = (φT
i , φ

P
k ) be in R

I+JΓ ×R
K ; its discrete gradient ∇D

h φ
and (vector) curl ∇D

h × φ are defined by their values on the cells Dj by

(∇D
h φ)j :=

1

2 |Dj|
{[

φP
k2

− φP
k1

]

(|A′
j1|n′

j1 + |A′
j2|n′

j2) +
[

φT
i2 − φT

i1

]

|Aj |nj

}

,

(∇D
h × φ)j := − 1

2 |Dj |
{[

φP
k2

− φP
k1

]

(|A′
j1|τ ′

j1 + |A′
j2|τ ′

j2) +
[

φT
i2 − φT

i1

]

|Aj |τ j

}

.

We recall that the formulae in Def. 2.5 are exact for affine functions.

Proposition 2.6. For u ∈ (R2)J and φ = (φT , φP ) ∈ R
I+JΓ ×R

K, the following
discrete Green formulae hold:

(u,∇D
h φ)D = −(∇T,P

h · u, φ)T,P + (u · n, φ̃)Γ,h(2.5)

(u,∇D
h × φ)D = (∇T,P

h × u, φ)T,P − (u · τ , φ̃)Γ,h.(2.6)
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Fig. 2.3. Notations for a boundary dual cell in formula (2.9)

Proposition 2.7. For all φ = (φT
i , φ

P
k ) ∈ R

I+JΓ × R
K , there holds

(

∇T
h · (∇D

h × φ)
)

i
= 0 ∀i ∈ [1, I] and

(

∇P
h · (∇D

h × φ)
)

k
= 0 ∀k /∈ Γ,(2.7)

(

∇T
h × (∇D

h φ)
)

i
= 0 ∀i ∈ [1, I] and

(

∇P
h × (∇D

h φ)
)

k
= 0 ∀k /∈ Γ.(2.8)

In addition, for k ∈ Γ, the following equality holds (see Fig. 2.3 for the notations)

(

∇P
h × (∇D

h φ)
)

k
=

1

|Pk|

[

(

φT
I2 − φT

I1

)

+
1

2

(

φP
K1

− φP
K2

)

]

.(2.9)

Definition 2.8. For φ = (φT
i , φ

P
k ) ∈ R

I+JΓ × R
K , we define the function φh by

(φh)|Dj
∈ P 1(Dj), ∀j ∈ [1, J ],

φh(Miα(j) kβ(j)) =
1

2
(φT

iα(j) + φP
kβ(j)), ∀j ∈ [1, J ], ∀(αβ) ∈ {1; 2}2 .

Remark 2.9. Though the definition of a P 1 function by its values in four different
points is in general not possible, existence and uniqueness of the function φh are
ensured in the present case because φh(Mi1k1

) + φh(Mi2k2
) = φh(Mi1k2

) + φh(Mi2k1
)

and since the quadrilateral (Mi1k1
Mi1k2

Mi2k2
Mi2k1

) is a parallelogram. Moreover, the
function φh is continuous only at the midpoints of the diamond-cell edges.

Proposition 2.10. Elementary calculations show that

∇(φh)|Dj
= (∇D

h φ)j ,(2.10)

∇× (φh)|Dj
= (∇D

h × φ)j .(2.11)

Definition 2.11. In the sequel of the present work, we shall note by ∇hφh the
(L2(Ω))2 function whose restriction to each cell Dj is equal to ∇(φh)|Dj

= (∇D
h φ)j .

3. The finite volume scheme on general meshes. We recall the finite vol-
ume scheme used for the numerical approximation of Eq. (1.1)-(1.2)-(1.3). This
scheme is constructed on the basis of the discrete operators defined in section 2.

−(∇T
h · (∇D

h φ))i = (f̄)T
i ∀i ∈ [1, I],(3.1)

−(∇P
h · (∇D

h φ))k = (f̄)P
k ∀k /∈ Γ̄D,(3.2)

in which (f̄)T
i and (f̄)P

k are the mean values of f over Ti and Pk, respectively:

(f̄)T
i =

1

|Ti|

∫

Ti

f(x) dx and (f̄)P
k =

1

|Pk|

∫

Pk

f(x) dx.(3.3)
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Dirichlet boundary conditions are discretized by

φP
k = φd(Sk) , ∀k ∈ Γ̄D and φT

i =
1

2

(

φP
k1

+ φP
k2

)

, ∀i ∈ ΓD,(3.4)

where in the second equality, it is understood that Gi ∈ ΓD is the midpoint of
[Sk1

Sk2
] ⊂ ΓD. Note that there is a slight modification in the last boundary con-

ditions in (3.4) with respect to those proposed in [13]. The reason for this will appear
in section 4. Neumann boundary conditions are discretized by

(∇D
h φ)j · nj = ḡj , ∀j ∈ ΓN ,(3.5)

where ḡj is the mean value of g over the corresponding segment Aj

ḡj =
1

|Aj |

∫

Aj

g(σ) dσ.(3.6)

Lemma 3.1. The scheme (3.1), (3.2), (3.4), (3.5) has a unique solution.

Proof. Although the scheme (3.1), (3.2), (3.4), (3.5) is not exactly the same as
that proposed in [13], as stated above, the proof of this lemma may be easily adapted
from the proof of existence and uniqueness given in [13, Proposition 3.2].

Proposition 3.2. Let φ = (φT
i , φ

P
k ) be the solution of the scheme (3.1)–(3.6).

Let ψ = (ψT
i , ψ

P
k ) be such that ψP

k = 0 , ∀k ∈ Γ̄D and ψT
i = 0 , ∀i ∈ ΓD. Let φh and

ψh be the functions associated to φ and ψ by Def. 2.8. Let us set in addition

ψ∗
h(x) :=

1

2





∑

i∈[1,I]

ψT
i θ

T
i (x) +

∑

k∈[1,K]

ψP
k θ

P
k (x)



(3.7)

ψ̃h(σ) :=
∑

j∈Γ

ψ̃jθj(σ),(3.8)

where θT
i , θP

k and θj are respectively the characteristic functions of the cells Ti and
Pk and of the edge Aj ⊂ Γ. Then, there holds

∑

j

∫

Dj

∇φh · ∇ψh(x) dx =

∫

Ω

f ψ∗
h(x) dx +

∫

ΓN

g ψ̃h(σ) dσ .(3.9)

Proof. From (3.1), (3.2) and the fact that ψP
k vanishes for k ∈ Γ̄D, it follows that

−(∇T,P
h · (∇D

h φ), ψ)T,P = (f̄ , ψ)T,P .(3.10)

Using the discrete Green formula (2.5), the fact that ψ vanishes over Γ̄D and taking
(3.5) into account, we may transform (3.10) into

(∇D
h φ,∇D

h ψ)D = (f̄ , ψ)T,P + (ḡ, ψ̃)ΓN ,h.(3.11)

Evaluating the left-hand side in Eq. (3.11) with (2.2) and (2.10), and the right-hand
side with (2.1), (2.4), (3.3), (3.6), (3.7) and (3.8) leads to (3.9).
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4. A representation of the error in the energy norm. Let us first recall
that the solution of system (1.1)-(1.2)-(1.3) verifies

∫

Ω

∇φ̂ · ∇ψ (x) dx =

∫

Ω

f ψ (x) dx +

∫

ΓN

g ψ (σ) dσ(4.1)

for all ψ ∈ H1
D := {ψ ∈ H1(Ω) / ψ = 0 onΓD}. We seek to measure the broken H1

semi norm of the error between the exact solution φ̂ and the function φh associated
to the solution of the DDFV scheme. For this, we shall define

e =





∑

j

∫

Dj

∣

∣

∣∇φ̂ −∇hφh

∣

∣

∣

2

(x) dx





1/2

(4.2)

and we follow a now classical strategy, employed as soon as the discrete solution does
not belong to H1(Ω) (see [3, 11, 21]). Since ∇φ̂−∇hφh belongs to (L2(Ω))2, we may
write its discrete Helmholtz-Hodge decomposition in the following way

∇φ̂−∇hφh = ∇Φ̂ + ∇× Ψ̂(4.3)

with Φ̂ ∈ H1
D(Ω) and Ψ̂ ∈ H1

N :=
{

Ψ̂ ∈ H1(Ω) , ∇Ψ̂ · τ = 0 over ΓN

}

. This decom-

position is orthogonal and there holds

∇Ψ̂ · τ = 0 on ΓN ⇔ ∃ cN ∈ R s.t. Ψ̂|ΓN
= cN .(4.4)

If ΓN were multiply connected, then there would exist one constant cq for each com-
ponent ΓN,q of ΓN . Then, there holds

e2 =
∥

∥

∥∇Φ̂
∥

∥

∥

2

0,Ω
+

∥

∥

∥∇× Ψ̂
∥

∥

∥

2

0,Ω

=
∑

j

∫

Dj

(∇φ̂−∇hφh) · ∇Φ̂ (x) dx +
∑

j

∫

Dj

(∇φ̂ −∇hφh) · ∇ × Ψ̂ (x) dx(4.5)

:= i1 + i2 .

In order to find a suitable representation of i1 and i2, we need the following definitions

Definition 4.1. The boundary ∂Dj of any diamond-cell Dj is composed of the
four segments

[

Giα(j)Skβ(j)

]

with (α, β) ∈ {1; 2}. (see Fig. 2.2). Let us denote by S

the set of these edges when j runs over the whole set of diamond-cells and
◦
S those

edges in S that do not lie on the boundary Γ. Each s ∈ S is thus a segment that we

shall denote by
[

Gi(s)Sk(s)

]

. We shall also write s ∈
◦
Ti (resp. s ∈

◦
Pk) if s ⊂ Ti (resp.

s ⊂ Pk) and s 6⊂ Γ. Finally, we shall denote by ns one of the two unit normal vectors
to s, arbitrarily chosen among the two possible choices but then fixed for the sequel,
and [∇hφh · ns]s, the jump of the normal component of ∇hφh through s.

Proposition 4.2. Let φ = (φT
i , φ

P
k ) be the solution of the scheme (3.1)–(3.6)

and φh the function associated to φ by Def. 2.8. Let Φ̂ be defined in Eq. (4.3). Let

Φ = (ΦT
i ,Φ

P
k ) ∈ R

I+JΓ × R
K be such that

ΦP
k = 0 , ∀k ∈ Γ̄D and ΦT

i = 0 , ∀i ∈ ΓD.(4.6)
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The following representation holds

i1 =
1

2

∑

i∈[1,I]

∫

Ti

f
(

Φ̂ − ΦT
i

)

(x) dx +
1

2

∑

k∈[1,K]

∫

Pk

f
(

Φ̂ − ΦP
k

)

(x) dx

+
∑

Aj⊂ΓN

∫

Aj

(g − ḡj)
(

Φ̂ − Φ̃h

)

(σ) dσ

− 1

2

∑

i∈[1,I]

∑

s⊂
◦

Ti

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦT
i

)

(σ) dσ(4.7)

− 1

2

∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦP
k

)

(σ) dσ.

Proof. Since Φ̂ ∈H1
D, and for any Φ verifying (4.6), formulae (4.1) and (3.9) lead to

i1 =
∑

j

∫

Dj

∇φ̂ · ∇Φ̂ (x) dx −
∑

j

∫

Dj

∇hφh · ∇Φ̂ (x) dx

=

∫

Ω

f
(

Φ̂ − Φ∗
h

)

(x) dx +

∫

ΓN

g
(

Φ̂ − Φ̃h

)

(σ) dσ

−
∑

j

∫

Dj

∇hφh ·
(

∇Φ̂ −∇hΦh

)

(x) dx.(4.8)

Since ∇hφh is a constant over a given diamond-cell Dj, and since Φh belongs to P 1

and equals 1
2

(

ΦT
i(s) + ΦP

k(s)

)

at the midpoint of any diamond edge s, we may write,

using Green’s formula and the midpoint rule
∫

Dj

∇hφh·
(

∇Φ̂ −∇hΦh

)

(x) dx =

∫

∂Dj

∇hφh·n∂Dj

[

Φ̂ − 1

2

(

ΦT
i(s) + ΦP

k(s)

)

]

(σ) dσ ,

where n∂Dj
is the unit normal vector exterior to Dj on its boundary. Each s ∈

◦
S

contributes twice to the sum of integrals contained in the last line of (4.8), since
each interior s is located at the interface of two diamond-cells Dj . Moreover, since

Φ̂ ∈ H1(Ω), the jump of this function through s vanishes. On the other hand, for any
diamond-cell Dj whose boundary intersects Γ, one may easily remark that
∫

∂Dj∩Γ

∇hφh ·n∂Dj

[

Φ̂ − 1

2

(

ΦT
i(s) + ΦP

k(s)

)

]

(σ) dσ =

∫

Aj

∇hφh ·nj

(

Φ̂ − Φ̃h

)

(σ) dσ .

(4.9)
On the boundary ΓD, Φ̂ and Φ, and thus Φ̃h, vanish. On the boundary ΓN , the value
of ∇hφh · nj is known thanks to (3.5). With all these remarks, we may write

∑

j

∫

Dj

∇hφh ·
(

∇Φ̂ −∇hΦh

)

(x) dx =

∑

s∈
◦

S

∫

s

[∇hφh · ns]s

[

Φ̂ − 1

2

(

ΦT
i(s) + ΦP

k(s)

)

]

(σ) dσ(4.10)

+
∑

Aj⊂ΓN

∫

Aj

ḡj

(

Φ̂ − Φ̃h

)

(σ) dσ .
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Then, we may write Φ̂ − 1
2

(

ΦT
i(s) + ΦP

k(s)

)

= 1
2

[(

Φ̂ − ΦT
i(s)

)

+
(

Φ̂ − ΦP
k(s)

)]

. Sum-

ming in the right-hand side of (4.10) the various contributions of ΦT
i for a fixed i and

the various contributions of ΦP
k for a fixed k, we obtain the following formula

∑

j

∫

Dj

∇hφh ·
(

∇Φ̂ −∇hΦh

)

(x) dx =
1

2

∑

i∈[1,I]

∑

s⊂
◦

Ti

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦT
i

)

(σ)dσ

+
1

2

∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦP
k

)

(σ)dσ(4.11)

+
∑

Aj⊂ΓN

∫

Aj

ḡj

(

Φ̂ − Φ̃h

)

(σ) dσ.

Finally, according to (4.8) and the definition (3.7) of Φ∗
h, we obtain (4.7).

Before we turn to a representation formula for i2 in (4.5), we need some technical
lemmas related to the L2(Ω) scalar product of discrete gradients and curls.

Lemma 4.3. Let φ = (φT
i , φ

P
k ) be the solution of (3.1)–(3.6). There holds

(∇T,P
h × (∇D

h φ),Ψ)T,P = 0(4.12)

for any Ψ = (ΨT
i ,Ψ

P
k ) ∈ R

I+JΓ × R
K such that

ΨP
k = cN , ∀k ∈ Γ̄N and ΨT

i = cN , ∀i ∈ ΓN .(4.13)

Proof. According to Eq. (2.8), there holds

(∇T
h × (∇D

h φ))i = 0, ∀i ∈ [1, I] and (∇P
h × (∇D

h φ))k = 0 , ∀ k /∈ Γ.(4.14)

On the other hand, since the solution of the discrete problem verifies (3.4), there holds

φT
I1

= 1
2 (φP

k +φP
K1

) and φT
I2

= 1
2 (φP

k +φP
K2

) for k ∈
◦
ΓD, with the notations of Fig. 2.3.

This implies, thanks to Eq. (2.9)

(∇P
h × (∇D

h φ))k = 0, ∀ k ∈
◦
ΓD .(4.15)

With the definition (2.1) and the choice (4.13), Eqs. (4.14) and (4.15) imply that

(∇T,P
h × (∇D

h φ),Ψ)T,P =
1

2
cN

∑

k∈Γ̄N

|Pk| (∇P
h × (∇D

h φ))k .(4.16)

Now, if ΓN is a closed path, formula (2.9) imply that the sum in (4.16) vanishes since
every φT

i and every φP
k in that sum have two contributions that cancel. On the other

hand, if ΓN is not a closed path, then let us consider the boundary ΓN represented
on Fig. 4.1. The points k ∈ Γ̄N are the points K2, · · · ,KN−1. We have also displayed
the neighboring edges [K1,K2] and [KN−1,KN ] located on the Dirichlet boundaries
which are neighboring to ΓN . According to formula (2.9), in which the notations of
Fig. 2.3 are used, we obtain

∑

k∈Γ̄N

|Pk| (∇P
h × (∇D

h φ))k =
∑

p∈[1,N−2]

(φIp+1
− φIp

) +
1

2
(φKp

− φKp+2
)

= −φI1 +
1

2
(φK1

+ φK2
) + φIN−1

− 1

2
(φKN−1

+ φKN
).(4.17)
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KN

KN−1

KN−2

K1

K2

D
Γ

N
Γ

N−1I

N−2

K3
2

1I

I

I

Fig. 4.1. Notations for the Neumann boundary

Since we have chosen the solution φ of the discrete problem such that (3.4) is verified
on the Dirichlet boundaries, then φI1 = 1

2 (φK1
+φK2

) and φIN−1
= 1

2 (φKN−1
+φKN

).
The sum in (4.16) thus vanishes.

Lemma 4.4. Let φ = (φT
i , φ

P
k ) and Ψ = (ΨT

i ,Ψ
P
k ) be like in lemma 4.3. Let φh

and Ψh be their associated functions through Def. 2.8. There holds

∑

j

∫

Dj

∇hφh · ∇h × Ψh(x)dx = −
∫

ΓD

∇φd · τ Ψ̃h(σ)dσ − cN

∫

ΓN

∇φ̂ · τ (σ)dσ.(4.18)

Proof. Applying (2.10), (2.11) and the discrete Green formula (2.6), there holds

∑

j

∫

Dj

∇hφh · ∇h × Ψh (x) dx = (∇T,P
h × (∇D

h φ),Ψ)T,P − (∇D
h φ · τ , Ψ̃)Γ,h .(4.19)

The first term in the right-hand side of Eq. (4.19) vanishes thanks to lemma 4.3 and
the second term may be split into a contribution over ΓD and a contribution over ΓN .
Now, for any j ∈ Γ, Def. 2.5 and the fact that for boundary diamond-cells |A′

j2| = 0

and 2|Dj | = |Aj | |A′
j1|n′

j1 · τ j , imply that (∇D
h φ)j · τ j = 1

|Aj | (φk2(j) − φk1(j)). In

particular, on the boundary ΓD, the boundary conditions (3.4) imply

(∇D
h φ)j ·τ jΨ̃j =

1

|Aj |
(φd(Sk2(j))−φd(Sk1(j)))Ψ̃j =

1

|Aj |

∫

Aj

∇φd ·τ Ψ̃h(σ)dσ(4.20)

since Ψ̃h is a constant equal to Ψ̃j on Aj . This implies that

(∇D
h φ · τ , Ψ̃)ΓD ,h =

∑

j∈ΓD

|Aj | (∇D
h φ)j · τ j Ψ̃j =

∫

ΓD

∇φd · τ Ψ̃h (σ) dσ .(4.21)

As far as the contribution over ΓN is concerned, we infer from (4.13) that Ψ̃j = cN for

all j ∈ ΓN . Hence (∇D
h φ · τ , Ψ̃)ΓN ,h = cN

∑

j∈ΓN
(φk2(j) −φk1(j)) = cN (φK2

−φKN−1
)

where the notations of figure 4.1 are used. If ΓN is a closed path, then SK2
= SKN−1

and this sum vanishes and is thus equal to cN
∫

ΓN
∇φ̂ · τ (σ) dσ which also vanishes.

On the other hand, if ΓN is not a closed path, then K2 and KN−1 are on Γ̄D and the
values of φ at those points are imposed to be the values of φd by (3.4), that is to say

the values of φ̂ at those points, which means

(∇D
h φ · τ , Ψ̃)ΓN ,h = cN (φ̂(SK2

) − φ̂(SKN−1
)) = cN

∫

ΓN

∇φ̂ · τ (σ) dσ .(4.22)
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Eqs. (4.21) and (4.22), together with (4.19) lead to (4.18).
Proposition 4.5. Let φ = (φT

i , φ
P
k ) be the solution of the scheme (3.1)–(3.6)

and φh its associated function. Let Ψ̂ be defined in Eq. (4.3). Let Ψ = (ΨT
i ,Ψ

P
k ) ∈

R
I+JΓ × R

K be such that (4.13) holds and let Ψh be its associated function. Let
t := ∇φd · τ be defined on the boundary ΓD. Then, the following representation holds

i2 = −
∑

Aj⊂ΓD

∫

Aj

(t− t̄j)
(

Ψ̂ − Ψ̃h

)

(σ) dσ

+
1

2

∑

i∈[1,I]

∑

s⊂
◦

Ti

∫

s

[∇hφh · τ s]s

(

Ψ̂ − ΨT
i

)

(σ) dσ(4.23)

+
1

2

∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s

[∇hφh · τ s]s

(

Ψ̂ − ΨP
k

)

(σ) dσ .

Proof. From (4.5), there holds

i2 =

∫

Ω

∇φ̂ · ∇ × Ψ̂ (x) dx −
∑

j

∫

Dj

∇hφh · ∇h × Ψh (x) dx(4.24)

−
∑

j

∫

Dj

∇hφh ·
(

∇× Ψ̂ −∇h × Ψh

)

(x) dx.

By application of the continuous Green formula and taking into account the boundary
condition (1.2) and Eq. (4.4) there holds

∫

Ω

∇φ̂ · ∇ × Ψ̂ (x) dx = −
∫

ΓD

∇φd · τ Ψ̂ (σ) dσ − cN

∫

ΓN

∇φ̂ · τ (σ) dσ .(4.25)

Using (4.25) and (4.18), formula (4.24) may be rewritten as

i2 = −
∫

ΓD

∇φd · τ
(

Ψ̂ − Ψ̃h

)

(σ) dσ

−
∑

j

∫

Dj

∇hφh ·
(

∇× Ψ̂ −∇h × Ψh

)

(x) dx.(4.26)

We may now compute the second term in the right-hand side of Eq. (4.26) just like
we computed the last term in the right-hand side of Eq. (4.8). Considering separately
inner and boundary edges, we may write

∑

j

∫

Dj

∇hφh ·
(

∇× Ψ̂ −∇h × Ψh

)

(x) dx =

−
∑

s∈
◦

S

∫

s

[∇hφh · τ s]s

[

Ψ̂ − 1

2

(

ΨT
i(s) + ΨP

k(s)

)

]

(σ) dσ(4.27)

−
∑

j∈Γ

∫

∂Dj∩Γ

∇hφh · τ ∂Dj

[

Ψ̂ − 1

2

(

ΨT
i(s) + ΨP

k(s)

)

]

(σ) dσ .

As far as boundary edges are concerned, a formula analogous to (4.9) holds:
∫

∂Dj∩Γ

∇hφh ·τ ∂Dj

[

Ψ̂ − 1

2

(

ΨT
i(s) + ΨP

k(s)

)

]

(σ) dσ =

∫

Aj

∇hφh ·τ j

[

Ψ̂ − Ψ̃h

]

(σ)dσ.

(4.28)
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Now, if j ∈ ΓN , then Ψ̂ is a constant on Aj whose value is cN ; the same holds for Ψ̃h

thanks to (4.13). The contribution over the boundary ΓN thus vanishes in the above
expression. As far as ∇hφh · τ j is concerned, we have seen thanks to (4.20), that its
value over ∂Dj ∩ ΓD is ∇hφh · τ j = t̄j := 1

|Aj |
∫

Aj
∇φd · τ (σ) dσ . We thus have

∑

j∈Γ

∫

∂Dj∩Γ

∇hφh · τ j

[

Ψ̂ − 1

2

(

ΨT
i(s) + ΨP

k(s)

)

]

(σ)dσ =

∫

ΓD

t̄
[

Ψ̂ − Ψ̃h

]

(σ)dσ,(4.29)

where t̄ is the piecewise constant function defined over each segment Aj ⊂ ΓD by
t̄(σ) := t̄jθj(σ). If we compute the first term in the right-hand side of (4.27) just like
we computed the first term in the right-hand side of (4.10), and taking (4.29) into
account, Eq. (4.26) leads to (4.23).

5. A computable error bound and its efficiency. Before stating the main
results of this article, we recall some Poincaré-type inequalities and a trace inequality
that will be useful in the derivation of the error bound, and we state an hypothesis
under which the local error estimators are efficient.

5.1. Preliminaries. Lemma 5.1. Let ω be an open bounded set which is star-
shaped with respect to one of its points. Let u ∈ H1(ω) and let ūω be the mean-value
of u over ω. Then,

∃C(ω), s.t. ‖u− ūω‖L2(ω) ≤ C(ω) diam(ω) ‖∇u‖L2(ω) .(5.1)

Note that when ω is convex, a universal constant C(ω) is given by 1
π . When ω is not

convex, we may use explicitly computable formulas given, for example, by [7, 28].
Lemma 5.2. Let ω be an open polygonal set such that ω̄ is star-shaped with

respect to one of its vertices z located on a part γD (with non vanishing measure) of
the boundary γ = ∂ω. Let us suppose that at least one of the edges s included in ∂ω
is such that the considered point z is a vertex of s and such that s ⊂ γD. Then,

∃C(ω, γD) s.t. ‖u‖L2(ω) ≤ C(ω, γD) |ω|1/2 ‖∇u‖L2(ω) .(5.2)

for any function u ∈ H1(ω), such that u|γD
= 0.

We may precise C(ω, γD) by using formula (3.2) of reference [7].
Remark 5.3. In (5.1) and (5.2), the constants C(ω) and C(ω, γD) do not depend

on the diameter of ω, but only on its shape.
Lemma 5.4. Let T be a triangle and let E be one of its edges. Then, for any

function u ∈ H1(T ), such that
∫

E u(σ)dσ = 0, there holds

‖u‖L2(E) ≤
α√
2ρ̂

( |E|
|T |

)1/2

diam(T ) ‖∇u‖L2(T ) ,(5.3)

where α ≈ 0.730276 and ρ̂ = 1 −
√

2
2 are given by formula (23) of [21].

Finally, the trace inequality given by Theorem 4.1 and Remark 4.1 in [7] for
functions in W 1,p, p > 1 may be improved for p ≥ 2 and provides

Lemma 5.5. Let T be a triangle and let E be one of its edges; let ρ be the distance
from E to the vertex of T opposite to E, and let σ be the length of the longest among
the two other sides of T . Let ε > 0 be an arbitrary real-valued number; then for all
u ∈ H1(T ), there holds

‖u‖2
L2(E) ≤

1

ρ

(

(2 + ε−2) ‖u‖2
L2(T ) + ε2σ2 ‖∇u‖2

L2(T )

)

.(5.4)



14 P. OMNES, Y. PENEL AND Y. ROSENBAUM

S
k

t ik,1

Gi

t ik,2

T i

k
P

ik,1
σ

ik, 2
ρ

ik, 1
ρ

t ik,2   

t ik,1

ik,2
σ

s s

Fig. 5.1. For a primal cell Ti and its vertex Sk, Ti ∩ Pk is split in two triangles tik,1 and tik,2.

Hypothesis 5.6. We assume that the subtriangulation of Ω composed of all the
triangles tik,α (see Fig. 5.1) is regular in the sense that the minimum angles in those
triangles are bounded by below independently of the mesh.

5.2. Statement of the main results. Theorem 5.7. Let hT
i := diam(Ti)

and hP
k := diam(Pk). Let f̄T

i (resp. f̄P
k ) be the mean-value of f over Ti (resp.

over Pk). Let ḡj (resp. t̄j) be the mean-value of g (resp. of ∇φd ·τ ) over the Neumann
(resp. Dirichlet) boundary segment Aj. Let C(Ti), C(Pk) and C(Pk, ∂Pk ∩ ΓD),
C(Pk, ∂Pk ∩ΓN ) be the computable constants respectively involved in (5.1) and (5.2).
Let α be the constant involved in (5.3). Let us define, by analogy with [3],

osc (f, T,Ω) =

(

∑

i∈[1,N ]

(

C(Ti)h
T
i

)2 ∥

∥f − f̄T
i

∥

∥

2

L2(Ti)

)1/2

,(5.5)

osc (f, P,Ω) =

(

∑

k/∈Γ̄D

(

C(Pk)hP
k

)2 ∥

∥f − f̄P
k

∥

∥

2

L2(Pk)

)1/2

,(5.6)

str (f, P,ΓD,Ω) =

(

∑

k∈Γ̄D

(C(Pk, ∂Pk ∩ ΓD))
2 |Pk| ‖f‖2

L2(Pk)

)1/2

,(5.7)

osc(g,ΓN ) = α(1 +
√

2)

(

∑

j∈ΓN

diam2(Dj)

|Dj |
|Aj | ‖g − ḡj‖2

L2(Aj)

)1/2

,(5.8)

osc(t,ΓD) = α(1 +
√

2)

(

∑

j∈ΓD

diam2(Dj)

|Dj |
|Aj | ‖t− t̄j‖2

L2(Aj)

)1/2

.(5.9)

Moreover, for any µ > 0, let us define

χi(µ) =
(

C(Ti)h
T
i

)2
+ µ(5.10)

χk(µ) =

{
(

C(Pk)hP
k

)2
+ µ if k /∈ Γ̄D

C2(Pk,ΓD ∩ ∂Pk) |Pk| + µ if k ∈ Γ̄D
,(5.11)

χ′
k(µ) =

{
(

C(Pk)hP
k

)2
+ µ if k /∈ Γ̄N

C2(Pk,ΓN ∩ ∂Pk) |Pk| + µ if k ∈ Γ̄N
,(5.12)
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For any primal cell Ti and any dual cell Pk such that Ti ∩ Pk 6= ∅, let s = [GiSk] and
tik,1 and tik,2 be the triangles defined in Fig. 5.1 such that tik,1 ∪ tik,2 = Ti ∩ Pk. Let
ρik,α be the distance from s to the vertex of tik,α opposite to s and σik,α be the length
of the longest among the two other edges of tik,α. For any µ > 0, let us define

Cs(µ) =

(

1 +

√

1 +
σ2

ik,1

µ

) (

1 +

√

1 +
σ2

ik,2

µ

)

(

1 +

√

1 +
σ2

ik,1

µ

)

ρik,2 +

(

1 +

√

1 +
σ2

ik,2

µ

)

ρik,1

.(5.13)

We define the local and global error estimators by

(

ηT
i

)2
= inf

µ>0

[

χi(µ)
∑

s∈
◦

Ti

Cs(µ) ‖[∇hφh · ns]s‖
2
L2(s)

]

and
(

ηT
)2

=
∑

i

(

ηT
i

)2
,(5.14)

(

η′
T
i

)2

= inf
µ>0

[

χi(µ)
∑

s∈
◦

Ti

Cs(µ) ‖[∇hφh · τ s]s‖
2
L2(s)

]

and
(

η′
T
)2

=
∑

i

(

η′
T
i

)2

,(5.15)

(

ηP
k

)2
= inf

µ>0

[

χk(µ)
∑

s∈
◦

Pk

Cs(µ) ‖[∇hφh · ns]s‖
2
L2(s)

]

and
(

ηP
)2

=
∑

k

(

ηP
k

)2
,(5.16)

(

η′
P
k

)2

= inf
µ>0

[

χ′
k(µ)

∑

s∈
◦

Pk

Cs(µ) ‖[∇hφh · τ s]s‖
2
L2(s)

]

and
(

η′P
)2

=
∑

k

(

η′
P
k

)2

.(5.17)

Then, the following a posteriori error estimate holds

(

∑

j

∫

Dj

∣

∣

∣∇φ̂−∇hφh

∣

∣

∣

2

(x) dx

)1/2

≤(5.18)

1

2

(

[

osc(f, T,Ω) +
(

osc2(f, P,Ω) + str2(f, P,ΓD,Ω)
)1/2

+ 2osc(g,A,ΓN ) + ηT + ηP
]2

+
[

2osc(t, A,ΓD) + η′T + η′P
]2

)1/2

.

Moreover, under Hyp. 5.6, there exists a constant C independent of the mesh such that

(

ηT
i

)2 ≤ C

(

∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

2

L2(Ti)
+

(

hT
i

)2
∥

∥

∥f −
(

f̄
)T

i

∥

∥

∥

2

L2(Ti)

)

, ∀i ∈ [1, I],(5.19)

(

η′
T
i

)2

≤ C
∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

2

L2(Ti)
, ∀i ∈ [1, I],(5.20)

(

ηP
k

)2 ≤ C

(

∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

2

L2(Pk)
+

(

hP
k

)2
∥

∥

∥f −
(

f̄
)P

k

∥

∥

∥

2

L2(Pk)

)

, ∀k ∈ [1,K],(5.21)

(

η′
P
k

)2

≤ C
∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

2

L2(Pk)
, ∀k ∈ [1,K].(5.22)

Proof. The proof of (5.18) is based on (4.5), (4.7), (4.23) and on propositions 5.9,
5.11 and 5.13 below. The proof of (5.19)–(5.22) is postponed to subsection 5.5.

The proofs of propositions 5.9, 5.11 and 5.13 are based on special choices for the
values of (ΦT

i ,Φ
P
k ) and (ΨT

i ,Ψ
P
k ), since in the expressions (4.7) of i1 and (4.23) of i2,

these values are arbitrary, except for boundary values given by (4.6) and (4.13).
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Definition 5.8. Since Φ̂ and Ψ̂ are not necessarily more regular than H1(Ω),
we choose their interpolations to be their L2 projections on the primal and dual cells

ΦT
i =

1

|Ti|

∫

Ti

Φ̂(x) dx ∀i ∈ [1, I] , ΦP
k =

1

|Pk|

∫

Pk

Φ̂(x) dx ∀k /∈ Γ̄D .(5.23)

ΨT
i =

1

|Ti|

∫

Ti

Ψ̂(x) dx ∀i ∈ [1, I] , ΨP
k =

1

|Pk|

∫

Pk

Ψ̂(x) dx ∀k /∈ Γ̄N .(5.24)

Once the values of ΦP
k (resp. ΨP

k ) at the vertices have been chosen by (4.6) or (5.23)
(resp. (4.13) or (5.24)), we complete the definitions of (ΦT

i ,Φ
P
k ) (resp. (ΨT

i ,Ψ
P
k )), by

requiring that boundary values ΦT
i for i ∈ ΓN (resp. ΨT

i for i ∈ ΓD) be chosen through
formulae analogous to (2.3) in a way such that Φ̃j (resp. Ψ̃j) are the mean-values

of Φ̂ (resp. Ψ̂) over the corresponding boundary edges Aj.

5.3. Bounds for the higher-order terms. Since the a priori estimations ob-
tained in [13] show that the error norm e behaves like O(h) when the solution φ̂
is sufficiently regular, any contribution in i1 or i2 that behaves like O(h1+α) with
α > 0 will be asymptotically negligible in the error estimation. Contrarily to what is
often done, (see, e.g., [27]), we shall include these higher-order terms (HOT) in our
estimator since our purpose is to obtain a guaranteed upper bound for the error.

Proposition 5.9. Let the definitions of Theorem 5.7 hold. Then, there holds
∣

∣

∣

∣

∑

i

∫

Ti

f
(

Φ̂ − ΦT
i

)

(x)dx

∣

∣

∣

∣

≤ osc(f, T,Ω)
∥

∥

∥∇Φ̂
∥

∥

∥

L2(Ω)
,(5.25)

∣

∣

∣

∣

∑

k

∫

Pk

f
(

Φ̂ − ΦP
k

)

(x)dx

∣

∣

∣

∣

≤
(

osc2(f, P,Ω) + str2(f, P,ΓD,Ω)
)1/2

∥

∥

∥∇Φ̂
∥

∥

∥

L2(Ω)
,(5.26)

∣

∣

∣

∣

∑

j∈ΓN

∫

Aj

(g − ḡj)
(

Φ̂ − Φ̃h

)

(σ)dσ

∣

∣

∣

∣

≤ osc(g,ΓN )
∥

∥

∥∇Φ̂
∥

∥

∥

L2(Ω)
,(5.27)

∣

∣

∣

∣

∑

j∈ΓD

∫

Aj

(t− t̄j)
(

Ψ̂ − Ψ̃h

)

(σ)dσ

∣

∣

∣

∣

≤ osc(t,ΓD)
∥

∥

∥∇Ψ̂
∥

∥

∥

L2(Ω)
.(5.28)

Proof. Since ΦT
i was chosen as the mean value of Φ̂ over Ti (see (5.23)), we

have
∫

Ti
f

(

Φ̂ − ΦT
i

)

(x) dx =
∫

Ti

(

f − f̄T
i

)

(

Φ̂ − ΦT
i

)

(x) dx. The Cauchy-Schwarz

inequality, formula (5.1) (since Φ̂ ∈ H1(Ti)) and the discrete Cauchy-Schwarz in-
equality lead to (5.25). As far as (5.26) is concerned, we may proceed in the same
way but we have to distinguish whether k /∈ Γ̄D or not. Indeed, for k /∈ Γ̄D, we
have chosen ΦP

k as the mean-value of Φ̂ over Pk. On the other hand, when k ∈ Γ̄D,
we have set ΦP

k to 0 by (4.6) and the associated dual cells Pk have a part of their

boundary located on ΓD, on which Φ̂ vanishes, so that we may apply (5.2). Setting
ΩP

D =
⋃

k∈Γ̄D
Pk, we obtain

∣

∣

∣

∣

∑

k/∈Γ̄D

∫

Pk

f
(

Φ̂ − ΦP
k

)

(x) dx

∣

∣

∣

∣

≤ osc (f, P,Ω)
∥

∥

∥
∇Φ̂

∥

∥

∥

L2(Ω\ΩP
D

)
,(5.29)

∣

∣

∣

∣

∑

k∈Γ̄D

∫

Pk

f
(

Φ̂ − ΦP
k

)

(x) dx

∣

∣

∣

∣

≤ str(f, P,ΓD,Ω)
∥

∥

∥∇Φ̂
∥

∥

∥

L2(ΩP
D

)
.(5.30)

Inequalities (5.29) and (5.30) lead to (5.26). As far as (5.27) is concerned, Φ̃j has been

chosen in Def. 5.8 so that the function Φ̂ − Φ̃j has a vanishing mean-value over Aj ,
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which is an edge of the triangle Dj . Thus, Cauchy-Schwarz inequalities, together
with (5.3), lead to (5.27). Inequality (5.28) is obtained like (5.27).

Remark 5.10. For ε > 0, the quantities (5.5) to (5.9) are HOT as soon as
(f, g, t) ∈ Hε(Ω)×H1/2+ε(ΓN )×H1/2+ε(ΓD). Indeed, in that case,

∥

∥f − f̄T
i

∥

∥

L2(Ti)

is of order
(

hT
i

)min(1,ε) ‖f‖Hε(Ti)
, so that osc (f, T,Ω) is of order h1+min(1,ε). This is

also the case for the term (5.6). Moreover, since ΩP
D is the union of the dual cells whose

associated vertex Sk lies on Γ̄D, it is included in a stripe of width h along ΓD. Ilin’s
inequality (see, e.g., [9]), ensures that ‖f‖L2(ΩP

D
) is of order hmin( 1

2
,ε), which implies

that str (f, P,ΓD,Ω) is of order h1+min( 1
2
,ε). Finally, ‖g − ḡj‖L2(Aj)

and ‖t− t̄j‖L2(Aj)

are of order 1
2 + ε, and thus osc(g,ΓN) and osc(t,ΓD) are of order 1+ ε provided that

the quantity
diam2(Dj)

|Dj | is bounded independently of h on the whole boundary Γ.

5.4. Bounds for the main terms. Proposition 5.11. Let the definitions of
Theorem 5.7 hold. Then, there holds

∣

∣

∣

∣

∑

i∈[1,I]

∑

s∈
◦

Ti

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦT
i

)

(σ) dσ

∣

∣

∣

∣

≤ ηT
∥

∥

∥∇Φ̂
∥

∥

∥

L2(Ω)
,(5.31)

∣

∣

∣

∣

∑

i∈[1,I]

∑

s∈
◦

Ti

∫

s

[∇hφh · τ s]s

(

Ψ̂ − ΨT
i

)

(σ) dσ

∣

∣

∣

∣

≤ η′
T

∥

∥

∥∇Ψ̂
∥

∥

∥

L2(Ω)
.(5.32)

Proof. We shall only give the proof of (5.31), since the proof of (5.32) exactly
follows the same lines. By application of the Cauchy-Schwarz inequality on each of

the edges s ∈
◦
T i, and by the weighted discrete Cauchy-Schwarz inequality, we obtain

for any set of strictly positive real-valued numbers CT
s

∣

∣

∣

∣

∑

s∈
◦

Ti

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦT
i

)

(σ)dσ

∣

∣

∣

∣

≤

(

∑

s∈
◦

Ti

CT
s ‖[∇hφh · ns]s‖

2
L2(s)

)1/2(
∑

s∈
◦

Ti

1

CT
s

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(s)

)1/2

.(5.33)

Now, for each segment s, we may apply the trace inequality (5.4) on each of the two
triangles tik,1 and tik,2. A convex combination with weights κs for α = 1 and (1−κs)
for α = 2 of the resulting two inequalities leads to

∑

s∈
◦

Ti

1

CT
s

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(s)
≤

∑

s∈
◦

Ti

[

κs

CT
s

(

C1,s,1

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(tik,1)
+ C2,s,1

∥

∥

∥∇Φ̂
∥

∥

∥

2

L2(tik,1)

)

+
(1 − κs)

CT
s

(

C1,s,2

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(tik,2)
+ C2,s,2

∥

∥

∥∇Φ̂
∥

∥

∥

2

L2(tik,2)

)]

.

for all strictly positive εik,α, with C1,s,α =
(2+ε−2

ik,α
)

ρik,α
and C2,s,α =

ε2
ik,ασ2

ik,α

ρik,α
. If we give

an equal weight to the various contributions of the triangles tik,α in the above sum,
we can sum them up into a norm over Ti. This may be obtained by fixing µi in Ti
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independently of s and choosing εik,α for each s ∈
◦
Ti and α ∈ {1; 2} so that

ε2ik,α =
µi +

√

µ2
i + µiσ2

ik,α

σ2
ik,α

⇐⇒ C2,s,α = µiC1,s,α , ∀s ∈
◦
Ti , ∀α ∈ {1; 2}.(5.34)

Then κs and CT
s are chosen such that κsC1,s,1 = (1 − κs)C1,s,2 = CT

s . It is readily
checked that this leads to CT

s = Cs(µi) (see definition (5.13)). Then, there holds

∑

s∈
◦

Ti

1

CT
s

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(s)
≤

∑

s∈
◦

Ti

∑

α∈{1;2}

(

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(tik,α)
+ µi

∥

∥

∥∇Φ̂
∥

∥

∥

2

L2(tik,α)

)

.

Summing up these norms into norms over Ti and applying (5.1), we get

∑

s∈
◦

Ti

1

CT
s

∥

∥

∥Φ̂ − ΦT
i

∥

∥

∥

2

L2(s)
≤

[

(

C(Ti)h
T
i

)2
+ µi

] ∥

∥

∥∇Φ̂
∥

∥

∥

2

L2(Ti)
.(5.35)

With formulae (5.10), (5.33), (5.35) and the discrete Cauchy-Schwarz inequality, we
are lead to (5.31) after minimizing separately over each µi.

Remark 5.12. This minimization is performed numerically when we effectively
compute the estimators. However, we may already get an idea of the behaviour of ηT

i

by bounding it by the value of the function in (5.14) for µ =
(

hT
i

)2
, for example. By

definition of σik,α, this length is lower than the diameter of Ti, which implies

Cs

(

(

hT
i

)2
)

≤ (1 +
√

2)2

2(ρik,1 + ρik,2)
.(5.36)

If we assume that the ratios
ρik,α

hT
i

are all greater than the same constant, independently

of the mesh, we obtain the following bound, for a constant K independent of the mesh

(ηT
i )2 ≤ KhT

i

∑

s∈
◦

Ti

‖[∇hφh · ns]s‖
2
L2(s) .

The same remark holds for the choice of µ′
i.

As far as dual cells are concerned, we have the following result
Proposition 5.13. Let the definitions of Theorem 5.7 hold. Then, there holds

∣

∣

∣

∣

∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s

[∇hφh · ns]s

(

Φ̂ − ΦP
k

)

(σ) dσ

∣

∣

∣

∣

≤ ηP
∥

∥

∥∇Φ̂
∥

∥

∥

L2(Ω)
,(5.37)

∣

∣

∣

∣

∑

k∈[1,K]

∑

s⊂
◦

Pk

∫

s

[∇hφh · τ s]s

(

Ψ̂ − ΨP
k

)

(σ) dσ

∣

∣

∣

∣

≤ η′P
∥

∥

∥
∇Ψ̂

∥

∥

∥

L2(Ω)
.(5.38)

Proof. We proceed like on the primal cells, but we have to distinguish those dual
cells whose boundary does not intersect ΓD (resp. ΓN ), on which ΦP

k (resp. ΨP
k ) are

the mean values of Φ̂ (resp. Ψ̂) and for which we may thus apply (5.1), and those
whose boundary intersects ΓD (resp. ΓN ), for which we have to apply (5.2) since
(Φ̂ − ΦP

k ) (resp. (Ψ̂ − ΨP
k )) vanishes over ΓD ∩ ∂Pk (resp. ΓN ∩ ∂Pk), see Eqs. (4.3)

and (4.6) (resp. Eqs. (4.4) and (4.13)).
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5.5. Efficiency of the estimators. Here, we prove inequalities (5.19)–(5.22)
under Hypothesis 5.6. In what follows, the letter C designates quantities whose values
do not depend on the mesh. We start by two lemmas of which we skip the proof

Lemma 5.14. Under Hyp. 5.6, there exists a constant C independent of the mesh
such that for primal and dual cells Ti and Pk such that Ti ∩ Pk 6= ∅

(

hT
i

)2 |Ti ∩ Pk|−1 ≤ C and
(

hP
k

)2 |Ti ∩ Pk|−1 ≤ C.

Lemma 5.15. Under Hyp. 5.6, the constants C(Pk), C(Pk,ΓD ∩ ∂Pk) and
C(Pk,ΓN∩∂Pk) in Theorem 5.7 are bounded by a constant C independent of the mesh.
We start by proving (5.19). Since the estimator ηT

i involves jumps of ∇hφh through
the common edge s = [GiSk] of two neighboring diamond-cells, we shall use functions
with a support included in the triangles tik,α, with α = 1 or 2, defined in Figure 5.1.
Since we consider a fixed s in what follows, we simplify the notations into t1 and t2.
For any triangle t in {t1, t2}, we denote by λt,β the barycentric coordinates associated
with the three vertices of t, with β ∈ {1, 2, 3}. We suppose that the vertices of t1 and
t2 are locally numbered so that the two nodes of the edge s are the vertices 1 and 2
of each of the triangles t1 and t2. We define the following bubble functions

bt = 27λt,1λt,2λt,3 for t = t1 or t = t2,(5.39)

bs =

{

4λtα,1λtα,2 on tα, α ∈ {1; 2}
0 elsewhere

.(5.40)

There holds ωt := supp(bt) ⊂ t and ωs := supp(bs) = Ti ∩ Pk = t1 ∪ t2. In the
following proposition, proved, e.g., in [27], the constant C > 0 only depends on the
minimal angle in (t1, t2) so that, under Hyp. 5.6, it is independent of the mesh.

Proposition 5.16. For t = t1 or t = t2 and ht = diam(t), there holds

0 ≤ bt ≤ 1 , 0 ≤ bs ≤ 1,(5.41)
∫

s

bs(σ)dσ =
2

3
|s|,(5.42)

C−1h2
t ≤

∫

t

bt(x)dx =
9

20
|t| ≤ C h2

t ,(5.43)

C−1|s|2 ≤
∫

t

bs(x)dx =
1

3
|t| ≤ C|s|2,(5.44)

‖∇bt‖L2(t) ≤ Ch−1
t ‖bt‖L2(t) ,(5.45)

‖∇bs‖L2(t) ≤ C|s|−1 ‖bs‖L2(t) .(5.46)

Let us consider a primal cell Ti and an edge s in
◦
Ti. By definition, such an edge s

does not belong to Γ. Then, the function ws = [∇hφh · ns]sbs belongs to H1
D and we

may thus apply (4.1), which, taking into account the support of ws, reduces to
∫

ωs

∇φ̂ · ∇ws (x) dx =

∫

ωs

f ws (x) dx.(5.47)

Moreover, since φh belongs to P 1(Dj) and ws vanishes on Γ, the application of the
Green formula on each Dj implies
∫

Ω

∇hφh·∇ws(x)dx =
∑

j

∫

∂Dj

∇φh·n∂Dj
ws(σ)dσ =

∑

i

∑

s′⊂
◦

T i

∫

s′

[∇hφh·ns′ ]s′ws(σ)dσ.
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The only non-zero terms in the above double sum is that corresponding to s′ = s, so
that, taking into account the definition of ws and property (5.42)

∫

Ω

∇hφh · ∇ws(x) dx = |[∇hφh · ns]s|2
∫

s

bs(σ) dσ = C ‖[∇hφh · ns]s‖2
L2(s) .(5.48)

Eq. (5.48) implies, taking into account (5.47) and the support of ws in ωs

‖[∇hφh · ns]s‖2
L2(s) = C

[∫

ωs

(

∇hφh −∇φ̂
)

· ∇ws(x) dx +

∫

ωs

f ws (x) dx

]

≤ C

(

∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

L2(ωs)
‖∇ws‖L2(ωs) + ‖f‖L2(ωs)

‖ws‖L2(ωs)

)

.(5.49)

Let us now bound ‖∇ws‖L2(ωs) and ‖ws‖L2(ωs). There holds, thanks to (5.46),

‖∇ws‖L2(ωs) = |[∇hφh · ns]s| ‖∇bs‖L2(ωs) ≤ |[∇hφh · ns]s|C|s|−1 ‖bs‖L2(ωs) .(5.50)

‖ws‖L2(ωs) = |[∇hφh · ns]s| ‖bs‖L2(ωs) .(5.51)

Since (5.41) implies that b2s ≤ bs, then using (5.44) we get ‖bs‖L2(ωs) ≤ C |s|. This,

with (5.49)–(5.51) and since |[∇hφh · ns]s| = |s|−1/2 ‖[∇hφh · ns]s‖L2(s) leads to

‖[∇hφh · ns]s‖L2(s) ≤ C

(

|s|−1/2
∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

L2(ωs)
+ |s|1/2 ‖f‖L2(ωs)

)

.(5.52)

One usually expresses ‖f‖L2(ωs)
as a function of

∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

L2(ωs)
and of HOT.

For this, let t = t1 or t2, and let us denote by f̄t the mean value of f over t. Then,
consider wt = f̄tbt, where bt is defined by (5.39). The function wt belongs to H1

D.
Thus, taking into account the support of bt, Eq. (4.1) reduces to

∫

t

∇φ̂ · ∇wt (x)dx =

∫

t

fwt(x)dx.(5.53)

Moreover, since ∇hφh is a constant over t, and since wt vanishes on ∂t, there holds

∫

t

∇hφh · ∇wt (x)dx = 0.(5.54)

Since f̄t is a constant over t, there holds, thanks to (5.43), (5.53) and (5.54),

∥

∥f̄t

∥

∥

2

L2(t)
= |t|

(

f̄t

)2
= C

(

f̄t

)2
∫

t

bt(x)dx = C

∫

t

f̄twt(x)dx

= C

[∫

t

(

f̄t − f
)

wt(x)dx +

∫

t

(

∇φ̂−∇hφh

)

· ∇wt (x)dx

]

≤ C

(

∥

∥f̄t − f
∥

∥

L2(t)
‖wt‖L2(t) +

∥

∥

∥∇φ̂−∇hφh

∥

∥

∥

L2(t)
‖∇wt‖L2(t)

)

.(5.55)

Let us now bound ‖wt‖L2(t) and ‖∇wt‖L2(t). With (5.45), there holds

‖wt‖L2(t) =
∣

∣f̄t

∣

∣ ‖bt‖L2(t) and ‖∇wt‖L2(t) ≤
∣

∣f̄t

∣

∣Ch−1
t ‖bt‖L2(t)(5.56)
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Since (5.41) implies that b2t ≤ bt, then using (5.43) we get
∣

∣f̄t

∣

∣ ‖bt‖L2(t) ≤ C
∥

∥f̄t

∥

∥

L2(t)

Combining this and (5.55)–(5.56), we finally get

∥

∥f̄t

∥

∥

L2(t)
≤ C

(

∥

∥f̄t − f
∥

∥

L2(t)
+ h−1

t

∥

∥

∥∇φ̂−∇hφh

∥

∥

∥

L2(t)

)

.

Since s is an edge of t, there holds |s| ≤ ht; applying the triangle inequality, we obtain

‖f‖L2(t) ≤ C

(

∥

∥f̄t − f
∥

∥

L2(t)
+ |s|−1

∥

∥

∥∇φ̂−∇hφh

∥

∥

∥

L2(t)

)

.

Thus, taking into account that ωs = t1 ∪ t2, the above inequality implies

‖f‖L2(ωs)
≤ ‖f‖L2(t1)

+ ‖f‖L2(t2)

≤ C

(

∥

∥f̄ωs
− f

∥

∥

L2(ωs)
+ C|s|−1

∥

∥

∥∇φ̂−∇hφh

∥

∥

∥

L2(ωs)

)

.(5.57)

In the last inequality, we have used the fact that f̄t minimizes ‖c− f‖L2(t) when c

runs over R; in particular,
∥

∥f̄t − f
∥

∥

L2(t)
≤

∥

∥f̄ωs
− f

∥

∥

L2(t)
, where f̄ωs

is the mean

value of f over ωs. Combining (5.52) and (5.57), we obtain

‖[∇hφh · ns]s‖L2(s)≤C
(

|s|−1/2
∥

∥

∥
∇hφh −∇φ̂

∥

∥

∥

L2(ωs)
+ |s|1/2

∥

∥f − f̄ωs

∥

∥

L2(ωs)

)

.(5.58)

By definition, the local quantity (ηT
i )2 is lower than the value taken by the function

in (5.14) in µ =
(

hT
i

)2
. Since the primal cells have been supposed to be convex, we

may bound C(Ti) by 1/π. With (5.36) and (5.58), we obtain

(

ηT
i

)2 ≤ C
(

hT
i

)2 ∑

s∈
◦

Ti

1

ρik,1 + ρik,2

(

|s|−1
∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

2

L2(ωs)
+ |s|

∥

∥f − f̄ωs

∥

∥

2

L2(ωs)

)

.

Using lemma 5.14, and since by definition |Ti ∩ Pk| = 1
2 |s| (ρik,1 + ρik,2) and |s| ≤ hT

i ,
the above inequality leads to (5.19). As far as (5.20) is concerned, let us consider the
function vs = [∇hφh · τ s]sbs. There obviously holds

∫

Ω

∇φ̂ · ∇ × vs(x) dx =

∫

ωs

∇φ̂ · ∇ × vs(x) dx = 0 .(5.59)

Eq. (5.59) and the calculations that previously led to (5.48) may be used to yield

‖[∇hφh · τ s]s‖2
L2(s) = C

∫

ωs

∇hφh · ∇ ×vs(x)dx = C

∫

ωs

(

∇hφh −∇φ̂
)

· ∇ × vs(x)dx

≤ C
∥

∥

∥∇hφh −∇φ̂
∥

∥

∥

L2(ωs)
‖∇vs‖L2(ωs)

.(5.60)

Just like (5.49) led to (5.52) and then to (5.19), the inequality (5.60) leads to (5.20).
The dual inequalities (5.21) and (5.22) may be obtained in the same way. The only
difference is in the bounds of χk and χ′

k defined by (5.11) and (5.12), where lemma

5.15 is used, and where |Pk| is sometimes used in place of
(

hP
k

)2
. But since the cell

Pk is star-shaped with respect to Sk, it is included in the ball of radius hP
k centred

on Sk. Thus, there holds |Pk| ≤ π
(

hP
k

)2
, which allows us to conclude.

Remark 5.17. The second terms in (5.19) and (5.21) are of higher order as
soon as f is more regular than L2(Ω).
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6. Numerical results. We shall now consider two tests. The first has a stiff but
regular (C∞(Ω)) solution. A uniform mesh refinement will thus asymptotically give
the optimal order of convergence in O(h), or, equivalently, in O

(

N−1/2
)

, where N is
the number of primal cells in the mesh. We shall verify that the adaptive strategy will
give the same asymptotic order of convergence, but with lower errors. The second test
has a less regular solution since it belongs to H1+s(Ω), with s < 2/3. A uniform mesh
refinement will provide a convergence order in O(h2/3), which means in O

(

N−1/3
)

.

The adaptive strategy will recover the optimal order in O
(

N−1/2
)

. In both cases, we
shall be interested in the efficiency of the estimator.

In order to apply a mesh refinement strategy, it is necessary to rewrite the total
estimator given by (5.18) into a sum over the primal cells; indeed, it is on the primal
mesh that one usually has some kind of control, either through some meshing software
or through an appropriate refinement of a coarse mesh. Rewriting (5.18) is an easy
task, since we may split each dual cell into its intersections with various primal cells,
and since we may assess each boundary term to the primal cell whose boundary
includes the considered boundary edge. In the sequel, we shall denote by ηi this
aggregated local estimator.

6.1. Adaptivity for a stiff but regular solution. We start with a problem
inspired by [15], in which the authors consider the following multiscale problem. Let

Ω =] − 1, 1[2. We set r =
√

x2 + y2 and χ(r) = 1 if r ≤ ε, while χ(r) = 0 if r > ε.
Homogeneous Dirichlet boundary conditions are imposed in (1.2) and the function f

in (1.1) is chosen so that the exact solution φ̂ is given by

φ̂ = cos(kπx) cos(kπy) + ηχ(r) exp(1/ε2) exp[−1/(ε2 − r2)],

in which we impose k = 1
2 , η = 10 and ε = 1

4 . This solution is thus in C∞(Ω),
but displays a very strong peak in the neighborhood of (0, 0). We shall use a family
of meshes with possibly nonconforming square cells. More precisely, like in [15], we
consider ω = [−1/4, 1/4]2 and Ω \ ω is uniformly meshed with squares of size h,
while ω is uniformly meshed with squares of size h0 = h/2p. For p ≥ 1, the mesh is
thus nonconforming. The mesh corresponding to h = 1/4 and h/h0 = 4 is displayed
on Fig. 6.1. Then, the following refinement strategy is employed: we start with a
conforming coarse mesh h0 = h = 1/4, and for any given mesh of this family let
η2

ext :=
∑

Ti⊂Ω\ω η
2
i and η2

int :=
∑

Ti⊂ω η
2
i , and Next and Nint respectively represent

the number of primal cells in Ω \ ω and in ω. We expect the total error to behave
like e ≈ C(Next +Nint)

−1/2. We may also roughly expect ηext (respectively ηint) to

behave proportionally to N
−1/2
ext (resp. N

−1/2
int ), so that:

• if we refine ω only, the total error will roughly be (η2
ext + η2

int/4)1/2 with
(Next + 4Nint) cells.

• if we refine Ω \ ω only, the total error will roughly be (η2
ext/4 + η2

int)
1/2 with

(4Next +Nint) cells.
• if we refine both ω and Ω \ω, the total error will roughly be 1

2 (η2
ext + η2

int)
1/2

with 4(Next +Nint) cells.
Then, after each computation, we compare Ci := (η2

ext + η2
int/4)1/2(Next + 4Nint)

1/2,
Ce := (η2

ext/4 + η2
int)

1/2(4Next +Nint)
1/2 and Cie := (η2

ext + η2
int)

1/2(Next +Nint)
1/2

and the mesh is refined
• in ω only if Ci = min(Ci, Ce, Cie),
• in Ω \ ω only if Ce = min(Ci, Ce, Cie),
• in both ω and Ω \ ω if Cie = min(Ci, Ce, Cie).
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Fig. 6.1. Nonconforming mesh
with h = 1/4 and p = 2.
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Fig. 6.2. Errors for the multiscale problem
for the uniform (upper curve) and adaptive (lower
curve) refinements and all other possible meshes.
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Fig. 6.3. Efficiencies for the multiscale
problem.
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Fig. 6.4. Efficiencies for the multiscale
problem as a function of the central refinement
ratio p.

We present in Figure 6.2 a cloud of points corresponding to the true errors as a
function of the total number of primal cells, for all possible choices of couples (h, h0)
(with h0 ≤ h) that are so that the number of primal cells is lower than 70000. We
have also plotted the curve corresponding to a uniform mesh refinement (h = h0) and
the curve corresponding to the above described refinement strategy; we remark that
the latter curve is always below the cloud of points, and we may thus consider that,
in the present test, this strategy is optimal. This strategy leads to refine only in ω
until h/h0 = 16, with h = 1/4, and then to refine on the whole mesh. Note that this
corresponds to the observation in [13]. However, this mesh refinement is now driven
by the error estimator, while in [13] we needed the exact error! As far as the efficiency
of the estimator is concerned, Fig. 6.3 displays all the ratios of the estimators over the
true errors for all the meshes used in the previous computations. For these tests, the
efficiency of the estimator is mostly around 5, and always between 3.5 and 7. Fig. 6.4
displays the efficiencies for a fixed coarse grid h = 1/4 and for various refinement
ratios, with p up to 8. We remark that the efficiency is rather constant around 5,
until p = 6, and starts to deteriorate for p ≥ 7. This is however robust enough for our
purposes here, since the optimal p was found to be 4. This deterioration was expected,
since it was proved in section 5.5 that the efficiency of the estimator depends on the
regularity of the subtriangulation tik,α (see Figure 5.1). The fact that these triangles
degenerate at the boundary between the fine and coarse meshes when p grows larger
explains the observed worse efficiency. Note however that, as proved in [13], the a
priori error estimation does not degenerate with this refinement ratio.



24 P. OMNES, Y. PENEL AND Y. ROSENBAUM

−1/2

−1/3

  N

 0.001

 0.01

 0.1

 1

 10  100  1000  10000

Number of triangles

er
ro

r 
in

 th
e 

en
er

gy
 n

or
m

 100000

  adap

  unif

  N

Fig. 6.5. Errors for the singular solution
for a uniform and an adaptive refinement.
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Fig. 6.6. Efficiencies for the singular solu-
tion for a uniform and an adaptive refinement.

6.2. Adaptivity for a singular solution. This test case is rather classical.
The domain Ω is chosen to be ] − 1; 1[×]− 1; 1[\]0; 1[×]− 1; 0[. The exact solution is

φ̂(r, θ) = r2/3 sin(2θ/3), expressed in cylindrical coordinates (r, θ) centered on (0, 0).
We use the Triangle mesh generator described in [26]. On a given mesh, we compute
the aggregated estimators ηi and ask to refine a given Ti by a factor 4 in terms
of area if ηi ≥ (maxj ηj)/2. The Triangle mesh generator will not exactly refine a
given Ti into 4 similar sub-triangles, but will arrange so that the areas of the triangles
near the former Ti will be lower than or equal to |Ti|/4. In Figure 6.5, we have
plotted the curves of the true errors for a uniform and for an adaptive refinement, as
a function of the number of triangles in the primal mesh. The curve corresponding to
the uniform mesh refinement is, as expected, parallel to the N−1/3 curve, while the
curve corresponding to the adaptive mesh refinement is parallel to the N−1/2 curve,
which means the optimal convergence is recovered. Finally, we plot in Fig. 6.6 the
efficiency curves for the uniform refinement and for the adaptive refinement. The
efficiency varies roughly between 10 and 8 (except for the very coarse mesh) in the
former case, and seems to tend to 7 in the latter.

7. Conclusion. We have applied tools from the Finite Element framework to
derive a fully computable and efficient error bound for the DDFV discretization of
the Laplace equation in two dimensions. We have applied this theory to the adaptive
simulation on nonconforming meshes of a regular but stiff problem, and to the adaptive
simulation of a problem with a singular solution. On these tests, the efficiency of the
estimator varies most of the time between 5 and 10. Based on ideas developed for
example in [30], further work is under progress to obtain an estimator with a better
efficiency for more general diffusion equations discretized by the DDFV method.
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